

    
      
          
            
  
Designer API

Welcome to the API documentation for Mosaic Designer controllers.

If you’re new here then you might start with the introduction, otherwise you might want to read about what’s new.










            

          

      

      

    

  

    
      
          
            
  




Introduction

Mosaic Designer controllers offer HTTP and Lua APIs providing access to system information, playback functions and trigger operations.

In addition, a small JavaScript library is hosted on the controller’s web server, which wraps the HTTP requests of the web API and also provides a mechanism to subscribe to the controller’s websocket channels via callbacks.




            

          

      

      

    

  

    
      
          
            
  




Web API Authentication

If the controller has security setup then some endpoints of the HTTP API and some functions in the JavaScript library will require clients to authenticate in order to authorise the requests.


Authentication Methods

Two methods for authenticating users of the Web API are supported:


	Cookie Authentication: the default when using the API and/or query.js library in a custom web interface.


	Token Authentication: used with HTTP API requests, typically when the client is not a web browser.




With both methods, a new token, valid for 5 minutes, is returned from each authenticated request. If the user, or API client, is inactive for longer than 5 minutes then the cookie or token expires, requiring a username and password to be provided again.


Cookie Authentication

Cookie authentication is typically used by the controller’s web interface (either the default web interface or a custom web interface in a project).

Cookie authentication works with both the HTTP API and the query.js library.

A cookie is returned by the controller in response to a POST request to the /authenticate endpoint when the original_url is provided as a cookie or a query parameter. This is the endpoint used by the default login page whenever a user signs in.

The cookie is stored by a web browser automatically, and the browser then sends this cookie with subsequent requests to authenticate the user. The response from each authenticated request will update this cookie with a new token, valid for 5 minutes. If no authenticated requests are made for 5 minutes then the token in the cookie will expire and the /authenticate endpoint must be used to get a new token.

The cookie can be removed by making a GET request to the /logout endpoint, which can be done simply by navigating the browser to that endpoint.


Custom Login Page

Normally, a user will sign into the controller using the login page of the default web interface, which is shown if a user tries to visit a page that they don’t have access to. In a custom web interface, uploaded as part of a project, a custom login page can be configured with the LoginFile directive in the .webconfig file of the custom web interface. This custom login page is then shown instead of the default login page when a user tries to visit part of a custom web interface that they don’t have access to.

Typically a login page will be an HTML page with a form element containing fields for the username and password. The HTML snippet below can be used to generate a form with these fields:

<form action="/authenticate" method="POST">
  <input type="text" name="user">
  <input type="password" name="password">
  <button type="submit">Submit</button>
</form>





The form’s action is set to POST the form to the controller’s /authenticate endpoint. The original_url cookie will have been set by the webserver automatically, and will be sent by the browser as part of the POST request. If authentication is successful, the response from the controller will contain a token cookie, which the browser will store automatically.




Token Authentication

Token authentication is typically used by the HTTP API in cases where a web browser is not the client. The client requests a Bearer Token with a POST request to the controller’s /authenticate endpoint, providing the username and password, and this token is then used in future requests.

To use the token in a request, set the Authorization header value to Bearer {your token}, where {your token} should be replaced with the value of token in the response.

The JSON object in the response from each authenticated request will include a token attribute, whose value will be a new token, valid for 5 minutes. If no authenticated requests are made for 5 minutes then the token will expire and the /authenticate endpoint must be used to get a new token.






            

          

      

      

    

  

    
      
          
            
  




What’s New


v6.0


	Breaking change to HTTP authentication, using new Authenticate endpoint.


	Add Factory Reset HTTP endpoint.


	Remove password from the HTTP config response.





	Breaking change to setting colour overrides with new Override Colour object in HTTP and JavaScript.


	New snapshot functionality when setting colour overrides in HTTP and JavaScript.


	Add RDM Discovery HTTP endpoint and RDM Discovery JavaScript function.


	Add RDM Get HTTP endpoint and RDM Get JavaScript function.


	Add RDM Set HTTP endpoint and RDM Set JavaScript function.


	Add EDN protocols to Lua disable_output.






v5.0


	Added controller propagation to certain HTTP API requests and query.js functions.


	memory_free changed to memory_available in the HTTP & JavaScript System information and in the Lua System namespace.


	get_trigger_number function added.


	vlan_tag property added to Lua Controller.


	is_network_primary property added to Lua Controller.


	dns_servers property added to the Lua System namespace.








            

          

      

      

    

  

    
      
          
            
  




HTTP API

Mosaic controllers provide an HTTP API to query and control the current project and the controller itself.


Authentication

Mosaic controllers have user accounts, each of which can belong to different security groups, which in turn control access to parts of the HTTP API. The HTTP API has a series of endpoints to allow clients to authenticate users with the controller.






Querying and Controlling

The endpoints provided in the HTTP API for querying and controlling the controller and its current project are detailed in the following sections:



	Beacon

	Channel / Park

	Cloud

	Command

	Config

	Content Targets

	Controller

	DALI

	DALI Interface

	Factory Reset

	Group

	Input

	Log

	Lua Variable

	Output

	Override

	Project

	Project File

	Protocol

	RDM Discovery

	RDM Get

	RDM Set

	Remote Device

	Replication

	Hardware Reset

	Scene

	System

	Temperature

	Text Slots

	Time

	Timeline

	Trigger

	User

	User Groups












            

          

      

      

    

  

    
      
          
            
  




Authentication

Authentication reference for the controller HTTP API.







            

          

      

      

    

  

    
      
          
            
  




Authenticate


Methods


POST

Accepts form data or JSON to authenticate a user’s credentials.

POST /authenticate

The payload, whether form data or JSON, should have the following attributes:








	Attribute

	Value Type

	Description





	username

	string

	The username of the user.



	password

	string

	The user’s password.






If the credentials are valid, a JSON web token (JWT) is returned. This token is returned either as a token cookie or in a JSON object with a token attribute, depending on whether the original_url parameter was sent with the request.

To use a token returned in a JSON object to authorise a request, set the Authorization header value to Bearer {your token}, where {your token} should be replaced with the value of token in the response from /authenticate.

If the user cannot be authenticated because the username or password are incorrect then a redirect response will be returned, pointing to the value of the Referer header in the request.

The response will be a 400 error if either attribute is missing or a value is of an invalid type.


original_url

The original_url parameter is typically used when authenticating the user from form data sent from a web page. Its value is set to the path of the page from where the user was redirected to the login page, and its where the response from /authenticate will redirect the browser upon successful authentication. It can be sent as a cookie or a query parameter with the /authenticate request. Its presence in the request will result in the response from /authenticate setting a cookie with the JWT, rather than returning a JSON object containing the JWT.

For example, if an unauthenticated or unauthorised user attempts to access the configuration page of the built-in web interface, they would try to navigate to /default/config.lsp but the controller’s web server would redirect them to default/login.lsp and set the original_url cookie to /default/config.lsp.

In a custom web interface using .webconfig files to configure access control, the original_url cookie is automatically set by the web server when redirecting to the login page (which may be a custom login page) when the user attempts to access a restricted page for which they are not authorised.

In both cases, when the login page submits a request to /authenticate, the original_url cookie will be sent automatically by the browser. A successful response will redirect to the value of original_url and store a token cookie in the browser with the user’s JWT.







            

          

      

      

    

  

    
      
          
            
  




Logout


Methods


GET

Ends the user’s current session.

GET /logout

The request must be authenticated either with a cookie or by sending a valid Bearer token in the Authorization header.

If the request is made from a web browser using cookie authentication then the cookie will be deleted from the browser by the response. The web browser will reload the page from which the request was made if the Referer header is set.






            

          

      

      

    

  

    
      
          
            
  




Beacon


Methods


POST

Toggle beacon mode on the controller.

POST /api/beacon

In beacon mode, a controller will flash its LEDs or it screen continuously.






            

          

      

      

    

  

    
      
          
            
  




Channel / Park


Methods


POST

Park an output channel or channels at a specified level.

POST /api/channel

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	universe

	string

	See Universe Key String Format

	"dmx:1"



	channels

	string

	Comma separated list of channel numbers.

	"1-3,5"



	level

	integer

	Level to set the channel(s) to: 0-255.

	128








DELETE

Unpark an output channel or channels.

DELETE /api/channel

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	universe

	string

	See Universe Key String Format

	"dmx:1"



	channels

	string

	Comma separated list of channel numbers.

	"1-3,5"









Universe Key String Format

A universe key string takes the form:


	protocol:index for protocols dmx, pathport, sacn, art-net;


	protocol:kinetPowerSupplyNum:kinetPort for protocol kinet;


	protocol:remoteDeviceType:remoteDeviceNum for protocol rio-dmx;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocols edn, edn-spi.




Where:


	kinetPowerSupplyNum is an integer;


	kinetPort is an integer;


	remoteDeviceType can be rio08, rio44 or rio80, edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"rio-dmx:rio44:1"








            

          

      

      

    

  

    
      
          
            
  




Cloud


Methods


GET

Returns the state of connectivity to the cloud remote management system.

GET /api/cloud

Returns a JSON object with the following attributes:








	Attribute

	Value Type

	Description





	connected

	boolean

	Whether or not the system is currently connected to the cloud



	connecting

	boolean

	Whether or not the system is currently in the process of connecting to the cloud








POST

Allows configuration of the parameters for connection to the cloud.

POST /api/cloud

Payload is a JSON object with the following attributes:








	Attribute

	Value Type

	Description





	action

	string

	Either set_device_key or  clear_device_key



	cloud_device_key

	string

	Only required for set_device_key - the string to set as the key.











            

          

      

      

    

  

    
      
          
            
  




Command


Methods


POST

Run a Lua script or pass a command to the command line parser on the controller.


Note

The Command Line Parser must be enabled in the web interface settings of the current project, else this endpoint will not be available.



POST /api/cmdline

Payload is a JSON object with the following attributes:








	Attribute

	Value Type

	Description





	input

	string

	The script to parse or run.






For example:

{
  "input": "tl = 1 get_timeline(tl):start()"
}






Response

If the Command Line Parser is enabled in the web interface settings of the current project then a 200 status code will be returned, along with the text Executed if the script was executed successfully. If an error occurred when attempting to run the script then the error string will be returned.

The response will be 501 Not Implemented if the Command Line Parser is not enabled, or 400 Bad Request if no project is loaded.







            

          

      

      

    

  

    
      
          
            
  




Config


Methods


POST

Edits the configuration of the controller.

POST /api/config

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	ip

	string

	Optional. Set the controller’s IP address (management interface)

	"192.168.1.3"



	subnet_mask

	string

	Optional. Set the controller’s subnet mask (management interface)

	"255.255.255.0"



	gateway

	string

	Optional. Set the controller’s gateway address (management interface)

	"192.168.1.1"



	dhcp_enabled

	boolean

	Optional. Set whether the controller is assigned its IP address automatically by DHCP

	true



	name_server_1

	string

	Optional. Set the primary name server address

	"192.168.1.1"



	name_server_2

	string

	Optional. Set the secondary name server address

	"8.8.8.8"



	http_port

	integer

	Optional. Set the port opened for HTTP access to the controller’s web server

	80



	https_port

	integer

	Optional. Set the port opened for HTTPS access to the controller’s web server

	443



	year

	integer

	Optional. Set the year of the current date on the controller’s clock

	2021



	month

	integer

	Optional. Set the month of the current date on the controller’s clock (1-12)

	4



	day

	integer

	Optional. Set the day of the current date on the controller’s clock (1-31)

	25



	hour

	integer

	Optional. Set the hour component of the current time on the controller’s clock (0-23)

	13



	minute

	integer

	Optional. Set the minute component of the current time on the controller’s clock (0-59)

	21



	second

	integer

	Optional. Set the second component of the current time on the controller’s clock (0-59)

	46



	watchdog_enabled

	boolean

	Optional. Set whether the controller’s hardware watchdog is enabled

	true



	log_level

	integer

	Optional. Set the level of verbosity of the controller’s log (1-5)

	3



	syslog_enabled

	boolean

	Optional. Set whether the controller will send its log to a syslog server

	false



	syslog_ip

	string

	Optional. Set the IP address of a third party syslog server

	"192.168.1.2"



	ntp_enabled

	boolean

	Optional. Set whether the controller will fetch the current time automatically from an NTP server

	true



	ntp_ip

	string

	Optional. Set the IP address of a third party NTP server

	"192.168.1.1"






If the response status code is 200 (OK), the response body will be a JSON object with a restart attribute. The value of restart is boolean. If true, the controller will reset itself imminently in order to apply the changes.



GET

Returns information about the queried controller’s configuration.

GET /api/config

Returns a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	ip

	string

	Controller IP address (management interface)

	"192.168.1.3"



	subnet_mask

	string

	Controller subnet mask (management interface)

	"255.255.255.0"



	gateway

	string

	Gateway address (management interface)

	"192.168.1.1"



	dhcp_enabled

	boolean

	Whether the controller is assigned its IP address automatically by DHCP

	true



	name_server_1

	string

	Primary name server address

	"192.168.1.1"



	name_server_2

	string

	Secondary name server address

	"8.8.8.8"



	http_port

	integer

	Port opened for HTTP access to the controller’s web server

	80



	https_port

	integer

	Port opened for HTTPS access to the controller’s web server

	443



	year

	integer

	Year of the current date, according to the controller’s clock

	2021



	month

	integer

	Month of the current date, according to the controller’s clock (1-12)

	4



	day

	integer

	Day of the current date, according to the controller’s clock (1-31)

	25



	hour

	integer

	Hour component of the current time, according to the controller’s clock (0-23)

	13



	minute

	integer

	Minute component of the current time, according to the controller’s clock (0-59)

	21



	second

	integer

	Second component of the current time, according to the controller’s clock (0-59)

	46



	watchdog_enabled

	boolean

	Whether the controller’s hardware watchdog is enabled

	true



	log_level

	integer

	Level of verbosity of the controller’s log (1-5)

	3



	syslog_enabled

	boolean

	Whether the controller is sending its log to a syslog server

	false



	syslog_ip

	string

	IP address of a third party syslog server

	"192.168.1.2"



	ntp_enabled

	boolean

	Whether the controller is fetching current time automatically from an NTP server

	true



	ntp_ip

	string

	IP address of a third party NTP server

	"192.168.1.1"











            

          

      

      

    

  

    
      
          
            
  




Content Targets


Note

Atlas/Atlas Pro only




Methods


POST

Control a content target; currently the only supported action is to master the intensity of a content target (applied as a multiplier to output levels).

POST /api/content_target

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	action

	string

	The action to perform on the content target. Currently only master_intensity is supported.

	"master_intensity"



	type

	string

	Optional. Type of content target (only relevant on Atlas Pro): primary, secondary, target_3, target_4, target_5, target_6, target_7, target_8. Defaults to primary.

	"secondary"



	level

	float or string containing a bounded integer

	Master intensity level to set on the content target

	0.5 or "50:100"



	fade

	float

	Optional. Fade time to apply the intensity change, in seconds.

	2.0



	delay

	float

	Optional. Time to wait before applying the intensity change, in seconds.

	2.0








GET

Returns information about the current state of all Content Targets in the project.

GET /api/content_target

Returns a JSON object with a single content_targets attribute, which has an array value. Each item in the array is a Content Target object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	name

	string

	Content target name

	"Primary"



	level

	integer

	Current intensity master level of the content target, 0-100

	100











            

          

      

      

    

  

    
      
          
            
  




Controller


Methods


GET

Returns data about the controllers in the project.

GET /api/controller

Returns a JSON object with a single controllers attribute, which has an array value. Each item in the array is a Controller object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Controller number

	1



	type

	string

	Controller type, e.g. “MSC” or “MTPC”

	“MSC”



	name

	string

	Controller user name, or the default name if none is set

	"Controller 1"



	serial

	string

	Serial number of the controller

	"009060"



	ip_address

	string

	IP address of the controller if the controller is discovered; empty if the controller is not discovered or is the queried controller

	"192.168.1.3" or ""



	online

	boolean

	Whether the controller is detected as online on the local network

	true



	is_network_primary

	boolean

	Whether the controller is set as the network primary in the project

	true











            

          

      

      

    

  

    
      
          
            
  




DALI

If the project uses DALI, the DALI API call can be used to get the status of connected DALI ballasts,
and to allow external systems to mark DALI issues as fixed.


Methods


GET

Returns information about connected DALI devices on a particular interface - see DALI Interface to retrieve a list of interfaces.

GET /api/dali?interface=interface_num

interface_num is an integer referring to a specific interface.

Returns a JSON object with the following attributes:








	Attribute

	Value Type

	Description





	online

	boolean

	Whether or not the interface is currently online



	schedule

	object

	A DALI Schedule object



	power

	object

	A DALI Power object



	errors

	array of objects

	An array of DALI Error objects



	ballast_status

	array of objects

	An array of DALI Ballast Status objects








POST

Allows marking of a DALI error as fixed, or refresh of the DALI data.

POST /api/dali

Payload is a JSON object with the following attributes:








	Attribute

	Value Type

	Description





	interface

	integer

	The interface on which to perform the reset.



	address

	integer

	The DALI short address on which to perform the reset.



	action

	string

	Either mark_fixed or refresh.











            

          

      

      

    

  

    
      
          
            
  




DALI Interface

The DALI Interface API allows retrieval of a list of DALI interfaces in the system.


Methods


GET

Returns an array of DALI interfaces

GET /api/dali_interfaces

Returns an array of JSON objects with the following attributes:








	Attribute

	Value Type

	Description





	id

	integer

	The ID of the interface



	name

	string

	The assigned string name of the interface











            

          

      

      

    

  

    
      
          
            
  




Factory Reset

Reset the controller to its factory settings, including all network settings and user accounts.


HTTP


POST

POST /api/factory_reset






            

          

      

      

    

  

    
      
          
            
  




Group


Note

Not applicable to Atlas/Atlas Pro




Methods


POST

Control a group; currently the only supported action is to master the intensity of a group (applied as a multiplier to output levels). Action will propagate to all controllers in a project.

POST /api/group

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	action

	string

	The action to perform on the group. Currently only master_intensity is supported.

	"master_intensity"



	num

	integer

	Group number. Group 0 means the All Fixtures group.

	1



	level

	float or string containing a bounded integer

	Master level to set on the group

	0.5 or "50:100"



	fade

	float

	Optional. Fade time to apply the intensity change, in seconds.

	2.0



	delay

	float

	Optional. Time to wait before applying the intensity change, in seconds.

	2.0








GET

Returns data about the fixture groups in the project.

GET /api/group[?num=groupNumbers]

num can be used to filter which groups are returned and is expected to be either a single number or a string expressing the required groups, e.g. "1,2,5-9".


Note

Group 0 will return data about the All Fixtures group.



Returns a JSON object with a single groups attribute, which has an array value. Each item in the array is a Group object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Group number (only included for user-created groups)

	1



	name

	string

	Group name

	"Group 1"



	level

	integer

	Group master level, 0-100

	100











            

          

      

      

    

  

    
      
          
            
  




Input


Methods


GET

Returns the status of digital & analogue inputs on the queried controller.

GET /api/input

Returns a JSON object with the following attributes:








	Attribute

	Value Type

	Description





	gpio

	array

	Array of Input objects; returned when queried controller is MSC or MTPC + TPC-RIO



	dmxIn

	object

	DMX Input object; returned when DMX input is configured on the queried controller






The Input object has the following properties:









	Attribute

	Value Type

	Description

	Value Example





	input

	integer

	Input number

	1



	type

	string

	Analog, Digital, or Contact Closure

	"Contact Closure"



	value

	integer or boolean

	Value type depends on input type - Analog inputs return an integer, 0-100; other types return a bool.

	true






The DMX Input object has the following properties:









	Attribute

	Value Type

	Description

	Value Example





	error

	string

	If DMX input is configured but no DMX is received

	"No DMX received"



	dmxInFrame

	array

	Array of channel values

	[0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]



	dmxInSourceCount

	integer

	The number of sources - will be 1 except for sACN.

	1



	dmxInProtocol

	string

	dmx, art-net or sacn

	"dmx"











            

          

      

      

    

  

    
      
          
            
  




Log


Methods


GET

Returns the log from the controller.

GET /api/log

Returns a JSON object with the following attributes:








	Attribute

	Value Type

	Description





	log

	string

	The whole log from the controller











            

          

      

      

    

  

    
      
          
            
  




Lua Variable


Methods


GET

Returns the current value of specified Lua variables.

GET /api/lua?variables=luaVariables

luaVariables is expected to be a string or comma-separated list of strings, where each string is a Lua variable name.

Returns a JSON object with the Lua variables and their values as its key/value pairs - the Lua variable names are the keys.

For example, in a project that creates variables called bob and alice, GET /api/lua?variables=bob,alice could return a JSON object as follows:

{
  "alice": 1234,
  "bob": "a string variable"
}










            

          

      

      

    

  

    
      
          
            
  




Output


Methods


POST

Enable/disable the output of a selected protocol from the controller. Action will propagate to all controllers in a project.

POST /api/output

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	protocol

	string

	Protocol to disable. Options: dmx, pathport, sacn, art-net, kinet, rio-dmx, edn, edn-spi.

	"parthport"



	action

	string

	Whether to enable or disable output via the protocol.

	"disable"








GET

Returns the lighting levels being output by the queried controller.

GET /api/output?universe=universeKey

universeKey is a string; see Universe Key String Format.

For example:
* GET /api/output?universe=dmx:1
* GET /api/output?universe=rio-dmx:rio44:1

If the queried controller is an MSC 1, the universe is DMX 2, DMX Proxy has been enabled for a MTPC in the project and the MTPC is offline then this request will return a JSON object with the following attributes:








	Attribute

	Value Type

	Value Example





	proxied_tpc_name

	string

	"Controller 2""






Otherwise a JSON object with the following attributes is returned:









	Attribute

	Value Type

	Description

	Value Example





	channels

	array

	Array of integer (0-255) channel levels

	[0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]



	disabled

	bool

	Whether the output has been disabled by a Trigger Action

	false









Universe Key String Format

A universe key string takes the form:


	protocol:index for protocols dmx, pathport, sacn, art-net;


	protocol:kinetPowerSupplyNum:kinetPort for protocol kinet;


	protocol:remoteDeviceType:remoteDeviceNum for protocol rio-dmx;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocols edn, edn-spi.




Where:


	kinetPowerSupplyNum is an integer;


	kinetPort is an integer;


	remoteDeviceType can be rio08, rio44 or rio80, edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"rio-dmx:rio44:1"








            

          

      

      

    

  

    
      
          
            
  




Override


Methods


PUT

Set the Intensity, Red, Green, Blue levels for a fixture or group. Action will propagate to all controllers in a project.

PUT /api/override

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	target

	string

	What the override should be applied to: group, fixture.

	"group"



	num

	integer

	Group or fixture number, depending on target. Group 0 means the All Fixtures group.

	1



	intensity

	integer or string

	Optional. Either an integer (0-255) representing the intensity to set as part of override or the string "snapshot" to capture the current intensity of the fixture(s) and set this as the override value. Intensity override will not be changed if this attribute isn’t provided.

	128



	colour

	Override Colour or string

	Optional. Specifies the colour to set as part of the override. Either an Override Colour or the string "snapshot" to capture the current colour of the fixture(s) and set this as the override.

	


	temperature

	integer or string

	Optional. Either an integer (0-255) representing the temperature component to set as part of override or the string "snapshot" to capture the current temperature component of the fixture(s) and set this as the override value. Temperature override will not be changed if this attribute isn’t provided.

	128



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0



	path

	string

	Optional. Crossfade path to use when applying the override: Default, Linear, Start, End, Braked, Accelerated, Damped, Overshoot, Col At Start, Col At End, Int At Start, Int At End, Colour First, Intensity First

	"Braked"







Override Colour

The value of the colour attribute in a PUT override request is a JSON object, specifying colour as either RGB or Hue/Saturation values.


RGB

Colour as RGB for colour in an override PUT request:









	Attribute

	Value Type

	Description

	Value Example





	red

	integer

	Optional. Red component to set as part of override: 0-255. Red override will not be changed if this attribute isn’t provided.

	255



	green

	integer

	Optional. Green component to set as part of override: 0-255. Green override will not be changed if this attribute isn’t provided.

	255



	blue

	integer

	Optional. Blue component to set as part of override: 0-255. Blue override will not be changed if this attribute isn’t provided.

	255








Hue/Saturation

Colour as hue/saturation for colour in an override PUT request:









	Attribute

	Value Type

	Description

	Value Example





	hue

	integer

	Hue component to set as part of override: 0-255.

	0



	saturation

	integer

	Saturation component to set as part of override: 0-255.

	255







Note

Both hue and saturation are required for the request to be valid.







DELETE

Release any overrides on fixtures or groups. Action will propagate to all controllers in a project.

DELETE /api/override

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	target

	string

	What the overrides should be cleared on: group, fixture.

	"group"



	num

	integer

	Optional. Group or fixture number, depending on target. If not provided, target is ignored and all overrides are cleared.

	1



	fade

	float

	Optional. Fade time in which to release overrides, in seconds.

	2.0











            

          

      

      

    

  

    
      
          
            
  




Project


Methods


GET

Returns data about the current project.

GET /api/project

Returns a JSON object with the following attributes:








	Attribute

	Value Type

	Value Example





	name

	string

	"Help Project"



	author

	string

	"Contoso"



	filename

	string

	"help_project_v1.pd2"



	unique_id

	string

	"{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"



	upload_date

	string

	"2017-01-30T15:19:08"











            

          

      

      

    

  

    
      
          
            
  




Project File

The controller allows you to upload or download the current project file, allowing the project in use to be switched out.


Methods


GET

Downloads the currently running project file.

GET /api/project/file

Returns the project file (as type application/vnd.pharos).



POST

Uploads a project file, which will trigger the controller to switch to the new file.


Warning

The file to be uploaded must be exported from Designer for the project using the Export Project For Upload button in Designer under the Network tab. You can not load a saved Designer project file directly.



POST /api/project/file

Uploads a project file to the controller. The body of the request should be the exported project file as binary data.

Note that the Content-Type header should be set to application/vnd.pharos; and the Content-Length header should be set to the size of the project file.






            

          

      

      

    

  

    
      
          
            
  




Protocol


Methods


GET

Returns all the universes in the project on the queried controller.

GET /api/protocol

Returns a JSON object with a single outputs attribute, which has an array value. Each item in the array is a Protocol object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	type

	integer

	Protocol type; possible types are: DMX (1), Pathport (2), Art-Net (4), KiNET (8), sACN (16), DVI (32), RIO DMX (64), EDN DMX (128), EDN SPI (256)

	1



	name

	string

	Protocol name

	"DMX"



	disabled

	boolean

	Whether the output has been disabled by a Trigger Action

	false



	universes

	array

	Array of Universe objects (see table below)

	[{"key":{"index":1},"name":"1"},{"key":{"index":2},"name":"2"}]



	dmx_proxy

	object

	DMX Proxy object, if applicable (see table below)

	{"ip_address":"192.168.1.17","name":"Controller 1"}






Each Universe object has the following properties:









	Attribute

	Value Type

	Description

	Value Example





	name

	string

	A simplistic version of the universe name, which for most protocols is simply the index number

	"1"



	key

	object

	Universe Key object (see table below)

	{"index":1}






Each DMX Proxy object has the following properties:









	Attribute

	Value Type

	Description

	Value Example





	name

	string

	Name of the controller that is outputting this universe by proxy

	"Controller 1"



	ip_address

	string

	IP address of the controller that is outputting this universe by proxy

	"192.168.1.17"






The properties of the Universe Key object depend on the type.

For DMX, Pathport, sACN and Art-Net:








	Attribute

	Value Type

	Value Example





	index

	integer

	1






For KiNET:








	Attribute

	Value Type

	Value Example





	kinet_port

	integer

	1



	kinet_power_supply_num

	integer

	1






For RIO DMX:









	Attribute

	Value Type

	Description

	Value Example





	remote_device_num

	integer

	Remote device number (address)

	1



	remote_device_type

	integer

	Value can be 101 (RIO 80), 102 (RIO 44) or 103 (RIO 08)

	101






For EDN:









	Attribute

	Value Type

	Description

	Value Example





	remote_device_num

	integer

	EDN number (address)

	1



	remote_device_type

	integer

	Value can be 109 (EDN 20) or 110 (EDN 10)

	110



	port

	integer

	Number of EDN output port

	1











            

          

      

      

    

  

    
      
          
            
  




RDM Discovery


Methods


POST

Request to start a full RDM discovery. A 202 response will be returned if the request has been successfully queued. Results are available via a websocket subscription (see subscribe_rdm_discovery).

POST /api/rdm/discovery

Payload is a JSON object with a single universe attribute, which can either be a string in the Universe Key String Format or an RDM Universe Key object.

For example, to start a full discovery on DMX universe 2, the request payload could be:

{
  "universe": "dmx:2"
}





or, alternatively:

{
  "universe": {
    "protocol": 1,
    "index": 2
  }
}





To start RDM discovery on the first port of the EDN 20 with number 4 in the project, the request payload could be:

{
  "universe": "edn:edn20:4:1"
}





or, alternatively:

{
  "universe": {
    "protocol": 128,
    "remote_device_type": 109
  }
}







PUT

Request to start an RDM discovery update, which is faster if a full RDM discovery has already been performed with a POST request. A 202 response will be returned if the request has been successfully queued. Results are available via a websocket subscription (see subscribe_rdm_discovery).

PUT /api/rdm/discovery

Payload is a JSON object with a single universe attribute, which can either be a string in the Universe Key String Format or an object with the same attributes as for the POST request.



GET

Returns the cached results of the last RDM discovery operation.

GET /api/rdm/discovery?universe=universeId

universe specifies which output universe to fetch cached RDM discovery data for. Its value is a string in the Universe Key String Format.

Returns a JSON object with a devices attribute, which has an array value. Each item in the array is an RDM Device Info object.




Universe Key String Format

A universe key string for RDM takes the form:


	protocol:index for protocols dmx and art-net;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.




Where:


	remoteDeviceType can be edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"edn:edn20:1:5"








            

          

      

      

    

  

    
      
          
            
  




RDM Get


Methods


POST

Request to start an RDM Get operation. A 202 response will be returned if the request has been successfully queued. Results are available via a websocket subscription (see subscribe_rdm_get_set).

POST /api/rdm/get

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	universe

	string in Universe Key String Format or RDM Universe Key

	The universe on which to perform the RDM Get operation.

	"dmx:2"



	destination_uid

	string

	Format is {manuId}:{deviceId}(:{subId})
where {manuId} is a padded unsigned hexadecimal integer of width 4, lowercase, e.g. 072c;
{deviceId} is a padded unsigned hexadecimal integer of width 8, lowercase, e.g. 0004fe02;
{subId} is an optional unsigned decimal integer.

	"072c:0004fe02"



	pid

	string

	RDM PID for the Get operation. Can be one of the Supported RDM PIDs or the raw PID value as a hex string, e.g. "FF".

	"DEVICE_INFO"



	meta

	object

	Optional. Metadata for the PID, i.e. query params (see Meta).

	


	max_rx_length

	integer

	Optional. Expected length of the response data. Only relevant if a raw PID value has been provided for pid. If not provided then the controller must wait for a timeout before handling a response to ensure all response data has been received from the device.

	






Meta


STATUS_MESSAGES

For the STATUS_MESSAGES PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	status_type

	integer

	Type of status messages to retrieve. Set to STATUS_NONE (0x00) to establish whether a device is present on the network without retrieving any status message data from the device.








PARAMETER_DESCRIPTION

For the PARAMETER_DESCRIPTION PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	pid_requested

	integer

	The manufacturer-specific PID for which a description is requested. Range 0x8000 to 0xFFDF.








DMX_PERSONALITY_DESCRIPTION

For the DMX_PERSONALITY_DESCRIPTION PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	personality_requested

	integer

	Index of the requested personality.








SLOT_DESCRIPTION

For the SLOT_DESCRIPTION PID, the meta object should have the following parameters:







	Attribute

	Value Type





	slot_number_requested

	integer








SENSOR_DEFINITION and SENSOR_VALUE

For the SENSOR_DEFINITION and SENSOR_VALUE PIDs, the meta object should have the following parameters:







	Attribute

	Value Type





	sensor_number_requested

	integer











Universe Key String Format

A universe key string for RDM takes the form:


	protocol:index for protocols dmx and art-net;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.




Where:


	remoteDeviceType can be edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"edn:edn20:1:5"






Supported RDM PIDs

The following PIDs are directly supported for RDM Get operations:


	COMMS_STATUS


	STATUS_MESSAGES


	SUPPORTED_PARAMETERS


	PARAMETER_DESCRIPTION


	DEVICE_INFO


	DEVICE_MODEL_DESCRIPTION


	MANUFACTURER_LABEL


	DEVICE_LABEL


	FACTORY_DEFAULTS


	SOFTWARE_VERSION_LABEL


	BOOT_SOFTWARE_VERSION_ID


	BOOT_SOFTWARE_VERSION_LABEL


	DMX_PERSONALITY


	DMX_PERSONALITY_DESCRIPTION


	DMX_START_ADDRESS


	SLOT_INFO


	SLOT_DESCRIPTION


	SENSOR_DEFINITION


	SENSOR_VALUE


	LAMP_HOURS


	LAMP_STATE








            

          

      

      

    

  

    
      
          
            
  




RDM Set


Methods


POST

Request to start an RDM Set operation. A 202 response will be returned if the request has been successfully queued. Results are available via a websocket subscription (see subscribe_rdm_get_set).

POST /api/rdm/set

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	universe

	string in Universe Key String Format or RDM Universe Key

	The universe on which to perform the RDM Set operation.

	"dmx:2"



	destination_uid

	string

	Format is {manuId}:{deviceId}(:{subId})
where {manuId} is a padded unsigned hexadecimal integer of width 4, lowercase, e.g. 072c;
{deviceId} is a padded unsigned hexadecimal integer of width 8, lowercase, e.g. 0004fe02;
{subId} is an optional unsigned decimal integer.

	"072c:0004fe02"



	pid

	string

	RDM PID for the Set operation. Can be one of the Supported RDM PIDs or the raw PID value as a hex string, e.g. "FF".

	"DEVICE_INFO"



	meta

	object

	Optional. Metadata for the PID, i.e. query params (see Meta).

	


	max_rx_length

	integer

	Optional. Expected length of the response data. Only relevant if a raw PID value has been provided for pid. If not provided then the controller must wait for a timeout before handling a response to ensure all response data has been received from the device.

	






Meta


DEVICE_LABEL

For the DEVICE_LABEL PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	label

	string

	Ascii text label for the device. Up to 32 characters.








IDENTIFY_DEVICE

For the IDENTIFY_DEVICE PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	enable

	boolean

	Whether to enable/disable IDENTIFY_DEVICE mode over RDM.








DMX_START_ADDRESS

For the DMX_START_ADDRESS PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	start_address

	integer

	DMX start address to set on the device.








DMX_PERSONALITY

For the DMX_PERSONALITY PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	personality

	integer

	Index of the personality to set as current.








SENSOR_VALUE

For the SENSOR_VALUE PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	sensor_number

	integer

	Sensor number to reset.








LAMP_HOURS

For the LAMP_HOURS PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	lamp_hours

	integer

	Starting value to set on the device’s lamp hours counter.








LAMP_STATE

For the LAMP_STATE PID, the meta object should have the following parameters:








	Attribute

	Value Type

	Description





	lamp_state

	integer

	Operating state to set the lamp to.








Raw

Where a raw PID value has been provided for pid, the meta object should have a single raw attribute with a string value. This value will be the base64-encoded string containing parameters for the Set command.






Universe Key String Format

A universe key string for RDM takes the form:


	protocol:index for protocols dmx and art-net;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.




Where:


	remoteDeviceType can be edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"edn:edn20:1:5"






Supported RDM PIDs

The following PIDs are directly supported for RDM Set operations:


	COMMS_STATUS


	DEVICE_LABEL


	FACTORY_DEFAULTS


	IDENTIFY_DEVICE


	DMX_START_ADDRESS


	DMX_PERSONALITY


	SENSOR_VALUE


	LAMP_HOURS


	LAMP_STATE








            

          

      

      

    

  

    
      
          
            
  




Remote Device


Methods


GET

Returns data about all the remote devices in the project.

GET /api/remote_device

Returns a JSON object with a single remote_devices attribute, which has an array value. Each item in the array is a Remote Device object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Remote device number (address)

	1



	type

	string

	RIO 08, RIO 44, RIO 80, BPS, BPI, RIO A, or RIO D

	"RIO 44"



	serial

	array

	Array of serial numbers (as strings) of all discovered devices matching the address and type

	["001234","005678"]



	outputs

	array

	Array of Output objects (see table below); only returned for RIO 44 and RIO 08 on the queried controller

	[{"output":1,"value":true},{"output":2,"value":true},{"output":3,"value":true},{"output":4,"value":true}]



	inputs

	array

	Array of Input objects (see table below); only returned for RIO 44 and RIO 80 on the queried controller

	[{"input":1,"type":"Contact Closure","value":true},{"input":2,"type":"Contact Closure","value":true},{"input":3,"type":"Contact Closure","value":true},{"input":4,"type":"Contact Closure","value":true}]



	online

	boolean

	Whether the remote device is detected as being online on the local network

	true






The Output JSON object has the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	output

	integer

	Number of the output, as labelled on the remote device

	1



	state

	boolean

	true means the output is on, false means it is off

	true






The Input JSON object has the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	input

	integer

	Number of the input, as labelled on the remote device

	1



	type

	string

	Analog, Digital, or Contact Closure

	""Digital"



	value

	integer or boolean

	Value type depends on input type - Analog inputs return an integer, 0-255; other types return a bool.

	true











            

          

      

      

    

  

    
      
          
            
  




Replication


Methods


GET

Returns data about the install replication.

GET /api/replication

Returns a JSON object with the following attributes:








	Attribute

	Value Type

	Value Example





	name

	string

	"Help Project"



	unique_id

	string

	"{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"











            

          

      

      

    

  

    
      
          
            
  




Hardware Reset


Methods


POST

Reboot the controller.

POST /api/reset






            

          

      

      

    

  

    
      
          
            
  




Scene


Methods


POST

Control a scene in the project.

Action will propagate to all controllers in a project.

POST /api/scene

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	action

	string

	The action to perform on the scene(s): start, release, toggle

	"start"



	num

	integer

	The number of the scene to perform the action on. If not present, the action will be applied to all scenes in the project; omitting this attribute is valid for release.

	1



	fade

	number

	Optional. The fade time to apply to a release action, in seconds, or the scene release that results from a toggle action. If not provided, the default release fade time will be used.

	2.0



	group

	string

	Optional. Scene group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A. This attribute is valid for a release action without a specified num, meaning release all scenes.

	"B"






For example, to start a scene 2, the request payload is:

{
  "action": "start",
  "num": 2
}





To release scene 2 in 3.5 seconds, the request payload would be:

{
  "action": "release",
  "num": 2,
  "fade": 3.5
}





To toggle scene 2, and release it in 2 seconds if it’s already been started, the request payload would be:

{
  "action": "toggle",
  "num": 2,
  "fade": 2.0
}





To release all scenes in 2 seconds, the request payload would be:

{
  "action": "release",
  "fade": 2.0
}





To release all scenes except those in group B in 2 seconds, the request payload would be:

{
  "action": "release",
  "group": "!B",
  "fade": 2.0
}







GET

Returns data about the scenes in the project and their state on the controller.

GET /api/scene[?num=sceneNumbers]

num can be used to filter which scenes are returned and is expected to be either a single number or a string expressing the required scenes, e.g. "1,2,5-9".

Returns a JSON object with a single scenes attribute, which has an array value. Each item in the array is a Scene object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Scene number

	1



	name

	string

	Scene name

	"Scene 1"



	state

	string

	none, started

	"none"



	onstage

	boolean

	Whether the scene is affecting output of any fixtures

	true











            

          

      

      

    

  

    
      
          
            
  




System


Methods


GET

Returns data about the controller.

GET /api/system

Returns a JSON object with the following attributes:








	Attribute

	Value Type

	Value Example





	hardware_type

	string

	“MSC”



	channel_capacity

	integer

	512



	serial_number

	string

	"006321"



	memory_total

	string

	"12790Kb"



	memory_used

	string

	"24056Kb"



	memory_available

	string

	"103884Kb"



	storage_size

	string

	"1914MB"



	bootloader_version

	string

	"0.9.0"



	firmware_version

	string

	"2.8.0"



	reset_reason

	string

	"Software Reset"



	last_boot_time

	string

	"01 Jan 2017 09:09:38"



	ip_address

	string

	"192.168.1.3"



	subnet_mask

	string

	"255.255.255.0"



	broadcast_address

	string

	"192.168.1.255"



	default_gateway

	string

	"192.168.1.3"











            

          

      

      

    

  

    
      
          
            
  




Temperature


Methods


GET

Returns data about the controller’s temperature.

GET /api/temperature

Returns a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	sys_temp

	number

	Only for MSC X and Atlas/Atlas Pro

	40.2



	core1_temp

	number

	Only for MSC X and Atlas/Atlas Pro

	44



	core2_temp

	number

	Only for MSC X rev 1

	44.1



	ambient_temp

	number

	Only for MTPC, MSC X rev 1

	36.9



	cc_temp

	number

	Only for MSC X rev 2 and Atlas/Atlas Pro

	44.1



	gpu_temp

	number

	Only for Atlas/Atlas Pro

	38.2











            

          

      

      

    

  

    
      
          
            
  




Text Slots


Methods


PUT

Set the value of a text slot used in the project, which will propagate to all controllers in a project.

PUT /api/text_slot

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	name

	string

	Text slot name

	"myTextSlot"



	value

	string

	New value for the text slot.

	"Hello World!"








GET

Returns data about the text slots in the project and their current values.

GET /api/text_slot[?names=slotNames]

slotNames can be used to filter which test slots are returned and is expected to be either a single string or an array of strings.

Returns a JSON object with a single text_slots attribute, which has an array value. Each item in the array is a Text Slot object with the following attributes:








	Attribute

	Value Type

	Value Example





	name

	string

	"text"



	value

	string

	"example"











            

          

      

      

    

  

    
      
          
            
  




Time


Methods


GET

Returns data about the time stored in the controller.

GET /api/time

Returns a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	datetime

	string

	Controller’s local time as a string

	"01 Feb 2017 13:44:42"



	local_time

	integer

	Controller’s local time in milliseconds

	1485956682



	uptime

	integer

	Milliseconds since last boot

	493347











            

          

      

      

    

  

    
      
          
            
  




Timeline


Methods


POST

Control a timeline in the project. Action will propagate to all controllers in a project.

POST /api/timeline

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	action

	string

	The action to perform on the timeline(s): start, release, toggle, pause, resume, set_rate, set_position

	"start"



	num

	integer

	The number of the timeline to perform the action on. If not present, the action will be applied to all timelines in the project; omitting this attribute is valid for release, pause and resume.

	1



	fade

	number

	Optional. The fade time to apply to a release action, in seconds, or the timeline release that results from a toggle action. If not provided, the default release fade time will be used.

	2.0



	group

	string

	Optional. Timeline group name: A, B, C, D, E, F, G or H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A. This attribute is valid for a release action without a specified num, meaning release all timelines.

	"B"



	rate

	string

	Required for a set_rate action; invalid otherwise. Value should be a string containing a floating point number or a bounded integer, where 1.0 means the timeline’s default rate.

	"0.1" or "10:100"



	position

	string

	Required for a set_position action; invalid otherwise. Value should be a string containing a floating point number or a bounded integer, representing a fraction of the timeline length.

	"0.1" or "10:100"






For example, to start a timeline 2, the request payload is:

{
  "action": "start",
  "num": 2
}





To release timeline 2 in 3.5 seconds, the request payload would be:

{
  "action": "release",
  "num": 2,
  "fade": 3.5
}





To toggle timeline 2, and release it in 2 seconds if it’s running, the request payload would be:

{
  "action": "toggle",
  "num": 2,
  "fade": 2.0
}





To pause timeline 4, the request payload is:

{
  "action": "pause",
  "num": 4
}





To resume timeline 4, the request payload is:

{
  "action": "resume",
  "num": 4
}





To pause all timelines, the request payload is:

{
  "action": "pause"
}





To resume all timelines, the request payload is:

{
  "action": "resume"
}





To release all timelines in 2 seconds, the request payload would be:

{
  "action": "release",
  "fade": 2.0
}





To release all timelines except those in group B in 2 seconds, the request payload would be:

{
  "action": "release",
  "group": "!B",
  "fade": 2.0
}





To set the rate of timeline 5 to half the default rage, the request payload would be:

{
  "action": "set_rate",
  "num": 5,
  "rate": "0.5"
}





To set the position of timeline 1 to a third of the way through, the request payload would be:

{
  "action": "set_rate",
  "num": 1,
  "position": "1:3"
}







GET

Returns data about the timelines in the project and their state on the controller.

GET /api/timeline[?num=timelineNumbers]

num can be used to filter which timelines are returned and is expected to be either a single number or a string expressing the required timelines, e.g. "1,2,5-9".

Returns a JSON object with a single timelines attribute, which has an array value. Each item in the array is a Timeline object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	1



	name

	string

	Timeline name

	"Timeline 1"



	group

	string

	Timeline group name (A through H or empty string)

	"A"



	length

	integer

	Timeline length, in milliseconds

	10000



	source_bus

	string

	internal, timecode_1 … timecode_6, audio_1 … audio_4

	"internal"



	timecode_format

	string

	Incoming timecode format on source bus

	"SMPTE30"



	audio_band

	integer

	0 is volume band

	0



	audio_channel

	string

	left, right or combined

	"combined"



	audio_peak

	boolean

	The Peak setting of the timeline, if set to an audio time source

	false



	time_offset

	integer

	1/1000 of a second

	5000



	state

	string

	none, running, paused, holding_at_end or released

	"running"



	onstage

	boolean

	Whether the timeline is affecting output of any fixtures

	true



	position

	integer

	1/1000 of a second

	10000



	priority

	string

	high, above_normal, normal, below_normal or low

	"normal"



	custom_properties

	object

	Object properties and property values correspond to custom property names and values

	{}











            

          

      

      

    

  

    
      
          
            
  




Trigger


Methods


POST

Fire a trigger in the project.

POST /api/trigger

Payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	User number of the trigger to fire.

	2



	var

	string

	Optional. Comma-separated to pass into the trigger.

	e.g. a string "Foo"; integers 2,4,5; multiple strings '"string1","string2","string3"'



	conditions

	boolean

	Optional. Whether to test the trigger’s conditions before deciding to run its actions. Defaults to true.

	true








GET

Returns the triggers in the project.

GET /api/trigger?[type=triggerType]

triggerType is expected to be a string and can be used to filter the type of trigger returned. For example, "Timeline Started" would return only Timeline Started triggers in the project.

Returns a JSON object with a single triggers attribute, which has an array value. Each item in the array is a Trigger object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	type

	string

	Trigger type

	"Startup"



	num

	integer

	Trigger user number

	1



	name

	string

	User-defined trigger name

	"Initialise"



	group

	string

	Trigger group colour as a hex colour string

	"#e18383"



	description

	string

	User-defined description of trigger

	""



	trigger_text

	string

	Generated description of when the trigger will run, based on its properties

	"At startup"



	conditions

	array

	Array of Condition objects (see below)

	[{"text":"Before 12:00:00 every day"}]



	actions

	array

	Array of Action objects (see below)

	[{"text":"Start Timeline 1"}]






The Condition and Action objects have the following properties:









	Attribute

	Value Type

	Description

	Value Example





	text

	string

	Generated description of the condition or action, based on its properties

	"Start Timeline 1"











            

          

      

      

    

  

    
      
          
            
  




User

This allows user accounts on the controller to be added, modified, or removed.


Methods


POST

POST /api/user

Add a new user. The payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	session_password

	string

	The password for the current session.

	"my_password"



	username

	string

	The name of the new user to add

	"bob"



	password

	string

	The new user’s password.

	"bobs_password"



	access

	array of strings

	The access level(s) to grant the new user. Includes Admin, Control and Status.

	["Control", "Status"]








PUT

PUT /api/user

Update a user account with a new password and/or access groups. The payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	session_password

	string

	The password for the current session.

	"my_password"



	"username"

	string

	The name of the user to modify

	"bob"



	password

	string

	The user’s updated password.

	"bobs_password"



	access

	array of strings

	The access level(s) to grant the user. Includes Admin, Control and Status.

	["Control", "Status"]








DELETE

DELETE /api/user

Update a user account with a new password and/or access groups. The payload is a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	session_password

	string

	The password for the current session.

	"my_password"



	username

	string

	The name of the user to delete

	"bob"











            

          

      

      

    

  

    
      
          
            
  




User Groups

These methods allow discovery of the user and guest groups on the controller.


Methods


GET

GET /api/user_groups

Get the list of available user groups. Returns a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	user_groups

	array of strings

	The list of available groups.

	["Admin", "Control", "Status"]








GET

GET /api/guest_groups

Get the list of available guest groups. Returns a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	guest_groups

	array of strings

	The list of available guest groups.

	["Foo", "Bar"]











            

          

      

      

    

  

    
      
          
            
  




HTTP API Objects

Reference for objects used in the controller HTTP API.







            

          

      

      

    

  

    
      
          
            
  




DALI Power

The DALI power object has the following attributes:









	Parameter

	Value Type

	Description

	Value Example





	dali_bus_uptime

	integer

	The amount of time the DALI bus has been up, in minutes

	368



	power_failures

	array of datetime

	A list of the time and dates of recent power failures

	["01 Feb 2017 13:44:42", "30 Nov 2022 08:33:01"]









            

          

      

      

    

  

    
      
          
            
  




DALI Error

The DALI error object has the following attributes:









	Parameter

	Value Type

	Description

	Value Example





	address

	integer

	The DALI bus address of the device with the error

	12



	test

	string

	The test that discovered the error

	"Function"



	error

	string

	A description of the DALI error

	"Battery Duration"



	fixed

	boolean

	Whether the error has been fixed. Once fixed, the error remains in the list until it is retested.

	true









            

          

      

      

    

  

    
      
          
            
  




DALI Schedule

The DALI ballast status object has the following attributes:









	Parameter

	Value Type

	Description

	Value Example





	next_function_test

	datetime

	The next date and time automated function test will occur

	"01 Feb 2017 13:44:42"



	next_duration_test

	datetime

	The next date and time automated duration test will occur

	"01 Feb 2017 13:44:42"



	prev_function_test

	datetime

	The previous date and time automated function test occurred

	"01 Feb 2017 13:44:42"



	prev_duration_test

	datetime

	The previous date and time automated duration test occurred

	"01 Feb 2017 13:44:42"









            

          

      

      

    

  

    
      
          
            
  




DALI Ballast Status

The DALI ballast status object has the following attributes:









	Parameter

	Value Type

	Description

	Value Example





	address

	integer

	The ballast address

	12



	user_name

	string

	The user assigned name of the ballast

	"Center Room"



	status

	string

	A string representing the current status of the ballast

	"Lamp Failure"



	actual_level

	integer

	The current actual output level of the ballast

	128



	battery_level

	integer

	For emergency ballasts only - the level of the battery reported

	12



	battery_charged

	boolean

	Whether or not the battery is charged

	True



	lamp_emergency_hours

	integer

	How many hours the fixture has been on in emergency state

	12



	lamp_total_hours

	integer

	How many hours the fixture has been on in total

	400



	last_status_check

	date/time

	The last date and time the ballast status was checked

	0









            

          

      

      

    

  

    
      
          
            
  




RDM Device Info

Where an RDM Device Info object is returned from an API request, it will have the following attributes:









	Parameter

	Value Type

	Description

	Value Example





	uid

	string

	Format is {manuId}:{deviceId}(:{subId})
where {manuId} is a padded unsigned hexadecimal integer of width 4, lowercase, e.g. 072c;
{deviceId} is a padded unsigned hexadecimal integer of width 8, lowercase, e.g. 0004fe02;
{subId} is an optional unsigned decimal integer.

	"072c:0004fe02"



	rdm_protocol_version

	integer

	16 bit value encoding the major version in the most significant byte and the minor version in the least significant byte. The current standard v1.0 is therefore 0x0100.

	0x0100



	device_model_id

	integer

	Device model ID of the Root Device or the Sub-Device. Must be unique within the products of a manufacturer.

	1836



	product_category

	integer

	16 bit value encoding the coarse category in the upper eight bits and the (optional) fine category in lower eight bits, e.g. 0x0100 is PRODUCT_CATEGORY_FIXTURE with no fine category.

	0x0100



	software_version_id

	integer

	Software version ID for the device, which is a 32-bit value determined by the manufacturer. It may use any encoding scheme such that the controller may identify devices containing the same software versions. Any devices from the same manufacturer with differing software will not report the same software version ID.

	


	dmx512_footprint

	integer (0-512)

	The DMX footprint of the device - the number of consecutive DMX slots required to patch the device. If the device is a sub-device, then the value is the DMX footprint for that sub-device. If the device is the root device, it is the footprint for the root device itself.

	3



	dmx512_personality

	integer

	16 bit field, encoding the current personality in the upper 8 bits and the total number of personalities supported by the device in the lower 8 bits.

	0x0102



	dmx512_start_address

	integer

	The DMX start address of the device, or 0xffff if the device has a DMX footprint of zero.

	7



	sub_device_count

	integer

	Number of sub devices represented by the root device. This value is always the same regardless of whether the device is the root device or a sub-device.

	0



	sensor_count

	integer

	Number of available sensors in a root device or sub-device. For sub-devices, this value is identical for any sub-device owned by the same root device. When a device or sub-device is fitted with a single sensor, it will return a value of 0x01 for the sensor count. This sensor would then be addressed as sensor number 0x00 when using the other sensor-related parameter messages.

	0









            

          

      

      

    

  

    
      
          
            
  




RDM Universe Key

Used to specify the target universe for RDM operations. It is a JSON object with the following attributes:








	Attribute

	Value Type

	Description





	protocol

	integer

	Output protocol (see Enumerated Protocols).



	index

	integer

	Only required for protocols DMX and ART-NET.



	remote_device_num

	integer

	Only required for protocol EDN. The remote device number of the EDN node.



	remote_device_type

	integer

	Only required for protocol EDN. The type of EDN as defined in Enumerated EDN Device Types.



	port

	integer

	Only required for protocol EDN. The port on the EDN.







Enumerated Protocols

Constants for protocols are defined in query.js as follows:







	Name

	Value





	DMX

	1



	PATHPORT

	2



	ARTNET

	4



	KINET

	8



	SACN

	16



	DVI

	32



	RIO_DMX

	64



	EDN

	128








Enumerated EDN Device Types

Constants for EDN types are defined in query.js as follows:







	Name

	Value





	EDN20

	109



	EDN10

	110










            

          

      

      

    

  

    
      
          
            
  




JavaScript Query Library

Mosaic controllers provide a JavaScript library, accessible at /default/js/query.js. Controller projects may have a custom web interface, whose source files may include this library to provide convenient access to the controller HTTP API through JavaScript callbacks and to real time status updates through websocket subscriptions.


Including the Library

The query.js library may be included within the <head> in any HTML file within a custom web interface created for a Mosaic Designer project as follows:

<!DOCTYPE html>
<html>
   <head>
      <meta charset="UTF-8">
      <meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=yes">
      <!--Include query.js library-->
      <script type="text/javascript" src="/default/js/query.js" defer></script>
   </head>
   <body>
   <!-- etc. -->
   </body>
</html>







Event Handlers

Functions are provided in the library to set event handlers.


	set_success_handler(success) - function passed as success will be called when a websocket connection is successfully established with the controller and when a response is received to an HTTP API request.


	set_error_handler(error) - function passed as error will be called when a websocket connection cannot be established with the controller and when an error is encountered as part of making an HTTP API request.


	set_restart_handler(restart) - function passed as restart will be called when the controller has restarted, at which point any users must authenticate again.


	set_redirect_handler(redirect) - function passed as redirect will be called when a request is unauthorized. The function will be passed the url of the default login page as a string, and may choose to return this (the default behaviour) or return the path of a custom login page.




For example:

Query.set_redirect_handler((suggestion) => {
  console.log("Suggested redirect: " + suggestion)
  return "/custom-login.html"
})







Querying and Controlling

The functions provided in query.js for querying and controlling the controller and its current project are in the following sections:



	Beacon

	Channel / Park

	Command

	Config

	Content Targets

	Controller

	Group

	Input

	Log

	Lua Variable

	Output

	Override

	Project

	Protocol

	RDM Discovery

	RDM Get

	RDM Set

	Remote Device

	Replication

	Scene

	System

	Temperature

	Text Slots

	Time

	Timeline

	Trigger







Subscriptions

Websocket subscriptions allow data to be pushed to the web client whenever there is a change within the project. The query.js library includes functions with callbacks to subscribe to each channel and return any data received.








            

          

      

      

    

  

    
      
          
            
  




Beacon


Functions


toggle_beacon

Toggle beacon mode on the controller.

toggle_beacon(callback)

In beacon mode, a controller will flash its LEDs or it screen continuously.






            

          

      

      

    

  

    
      
          
            
  




Channel / Park


Functions


park_channel

Park an output channel or channels at a specified level.

park_channel(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.



unpark_channel

Unpark an output channel or channels.

unpark_channel(params, callback)

params is expected to be an object with the same attributes as the HTTP DELETE request.






            

          

      

      

    

  

    
      
          
            
  




Command


Functions


run_command

Run a Lua script or pass a command to the command line parser on the controller.


Note

The Command Line Parser must be enabled in the web interface settings of the current project, else this function will not be available.



run_command(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

Returns Executed if the script was executed successfully or an error string if not.






            

          

      

      

    

  

    
      
          
            
  




Config


Functions


edit_config

Edits the configuration of the controller.

edit_config(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

The callback function will be passed the same object as is received from the HTTP POST request.



get_config

Returns information about the queried controller’s configuration.

get_config(callback)

Returns an object with the same attributes as in the HTTP GET response.

For example:

Query.get_config(config => {
  let year = config.year
})










            

          

      

      

    

  

    
      
          
            
  




Content Targets


Note

Atlas/Atlas Pro only




Functions


master_content_target_intensity

master_content_target_intensity(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	type

	string

	Optional. Type of content target (only relevant on Atlas Pro): primary, secondary, target_3, target_4, target_5, target_6, target_7, target_8. Defaults to primary.

	"secondary"



	level

	float or string containing a bounded integer

	Master level to set on the group

	0.5 or "50:100"



	fade

	float

	Optional. Fade time to apply the intensity change, in seconds.

	2.0



	delay

	float

	Optional. Time to wait before applying the intensity change, in seconds.

	2.0








get_content_target_info

get_content_target_info(callback)

Returns an object with a single content_targets attribute, which has an array value. Each item in the array is a Content Target object with the same attributes as in the HTTP GET response.

For example:

Query.get_content_target_info(c => {
  let level = c.content_targets[0].level // level of primary content target
})










            

          

      

      

    

  

    
      
          
            
  




Controller


Functions


get_controller_info

get_controller_info(callback)

Returns an object with a single controllers attribute, which has an array value. Each item in the array is a Controller object with the same attributes as in the HTTP GET response.

For example:

Query.get_controller_info(data => {
     for(index in data.controllers) {
       console.log("Controller " + index + " name is " + data.controllers[index].name);
     }
});





Will print out the name of each controller to the console.






            

          

      

      

    

  

    
      
          
            
  




Group


Note

Not applicable to Atlas/Atlas Pro




Functions


master_intensity

master_intensity(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Group number. Group 0 means the All Fixtures group.

	1



	level

	float or string containing a bounded integer

	Master level to set on the group

	0.5 or "50:100"



	fade

	float

	Optional. Fade time to apply the intensity change, in seconds.

	2.0



	delay

	float

	Optional. Time to wait before applying the intensity change, in seconds.

	2.0






For example:

// Master group 1 to 50% in 3 seconds
Query.master_intensity({
  "num":1,
  "level":"50:100",
  "fade":3
}, result => {
  // Check for error
})







get_group_info

Returns data about the fixture groups in the project.

get_group_info(callback[, num])

Returns an object with a single groups attribute, which has an array value. Each item in the array is a Group object with the same attributes as in the HTTP GET response.

num can be used to filter which groups are returned and is expected to be a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	string or integer

	Define the numbers of the group that should be returned

	"1,2,5-9" or 5







Note

Group 0 will return data about the All Fixtures group.



For example:

Query.get_group_info(g => {
  let name = g.groups[0].name // name of the first group returned
}, {"num":"2-4"})










            

          

      

      

    

  

    
      
          
            
  




Input

There’s no function in the JavaScript Query library to get the digital & analogue inputs at the moment.




            

          

      

      

    

  

    
      
          
            
  




Log

There’s no function in the JavaScript Query library to get the log at the moment.




            

          

      

      

    

  

    
      
          
            
  




Lua Variable


Functions


get_lua_variables

Returns the current value of specified Lua variables.

get_lua_variables(luaVariables, callback)

Returns an object with the requested Lua variables and their values as key/value pairs, in the same manner as the HTTP GET request.

luaVariables can be a string or an array of strings, where each string is a Lua variable name.
The Lua variable must be directly accessible from the Lua global table.

For example:

--[[ Lua definitions ]]--
foo = 'spam'
bar = {
   a = 'ham',
   b = 100
}
local baz = 'eggs'





/* Javascript Query */
Query.get_lua_variables(["foo","bar"], v => {
  let foo = v.foo // foo contains "spam"
  console.log(typeof foo) // Output: "string"
  let bar = v.bar // bar contains a javascript object { a: "ham", b: 100 }
  console.log(typeof bar) // Output: "object"
  console.log(typeof bar.a) // Output: "string"
  console.log(typeof bar.b) // Output: "number"
})

// Invalid query, `a` is a child of `bar` and not directly accessible from the global table
Query.get_lua_variables(["bar.a"], v => {})

// Invalid query, `baz` is scoped locally, and inaccessible from the global table
Query.get_lua_variables(["baz"], v => {})










            

          

      

      

    

  

    
      
          
            
  




Output


Functions


disable_output

Disable the output of a specified protocol from the controller. Propagates to all controllers in a project.

disable_output(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	protocol

	string

	Protocol to disable. Options: dmx, pathport, sacn, art-net, kinet, rio-dmx, edn, edn-spi.

	"parthport"








enable_output

Enable the output of a specified protocol from the controller. Propagates to all controllers in a project.

enable_output(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	protocol

	string

	Protocol to enable. Options: dmx, pathport, sacn, art-net, kinet, rio-dmx, edn, edn-spi.

	"parthport"








get_output

Returns the lighting levels being output by the queried controller.

get_output(universeKey, callback)

Returns an object with the same attributes as in the HTTP GET response.

universeKey can be a string (see Universe Key String Format) or it can be an object with the following attributes:








	Attribute

	Value Type

	Description





	protocol

	integer

	Output protocol (see Enumerated Protocols)



	index

	integer

	Required unless protocol is KINET, RIO_DMX or EDN



	kinet_power_supply_num

	integer

	Only required if protocol is KINET



	kinet_port

	integer

	Only required if protocol is KINET



	remote_device_type

	integer

	Only required if protocol is RIO_DMX or EDN (see Enumerated Remote Device Types)



	remote_device_num

	integer

	Only required if protocol is RIO_DMX or EDN



	port

	integer

	Only required if protocol is EDN






For example:

Query.get_output({
    protocol: KINET,
    kinet_port: 1,
    kinet_power_supply_num: 1
  }, u => {
  console.log(u)
  }
)

Query.get_output({
    protocol: DMX,
    index: 1
  }, u => {
    console.log(u)
  }
)

Query.get_output("dmx:1", u => {
  console.log(u)
})








Universe Key String Format

A universe key string takes the form:


	protocol:index for protocols dmx, pathport, sacn, art-net;


	protocol:kinetPowerSupplyNum:kinetPort for protocol kinet;


	protocol:remoteDeviceType:remoteDeviceNum for protocol rio-dmx;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocols edn, edn-spi.




Where:


	kinetPowerSupplyNum is an integer;


	kinetPort is an integer;


	remoteDeviceType can be rio08, rio44 or rio80, edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"rio-dmx:rio44:1"






Enumerated Protocols

Constants for protocols are defined in query.js as follows:







	Name

	Value





	DMX

	1



	PATHPORT

	2



	ARTNET

	4



	KINET

	8



	SACN

	16



	DVI

	32



	RIO_DMX

	64



	EDN

	128








Enumerated Remote Device Types

Constants for RIO types are defined in query.js as follows:







	Name

	Value





	RIO80

	101



	RIO44

	102



	RIO08

	103






Constants for EDN types are defined in query.js as follows:







	Name

	Value





	EDN20

	109



	EDN10

	110










            

          

      

      

    

  

    
      
          
            
  




Override


Functions


set_group_override

Set the Intensity, Red, Green, Blue levels for a group. Propagates to all controllers in a project.

set_group_override(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Group or fixture number, depending on target. Group 0 means the All Fixtures group.

	1



	intensity

	integer or string

	Optional. Either an integer (0-255) representing the intensity to set as part of override or the string "snapshot" to capture the current intensity of the fixture(s) and set this as the override value. Intensity override will not be changed if this attribute isn’t provided.

	128



	colour

	Override Colour or string

	Optional. Specifies the colour to set as part of the override. Either an Override Colour or the string "snapshot" to capture the current colour of the fixture(s) and set this as the override. JSON object with the same attributes as the HTTP PUT request.

	


	temperature

	integer or string

	Optional. Either an integer (0-255) representing the temperature component to set as part of override or the string "snapshot" to capture the current temperature component of the fixture(s) and set this as the override value. Temperature override will not be changed if this attribute isn’t provided.

	128



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0



	path

	string

	Optional. Crossfade path to use when applying the override: Default, Linear, Start, End, Braked, Accelerated, Damped, Overshoot, Col At Start, Col At End, Int At Start, Int At End, Colour First, Intensity First

	"Braked"








clear_group_overrides

Release any overrides on a group, or all groups. Propagates to all controllers in a project.

clear_group_overrides(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Optional. Group number. If not provided, all overrides are cleared.

	1



	fade

	float

	Optional. Fade time in which to release overrides, in seconds.

	2.0








set_fixture_override

Set the Intensity, Red, Green, Blue levels for a fixture. Propagates to all controllers in a project.

set_fixture_override(params, callback)

params is expected to be an object with the same attributes as for set_group_override.



clear_fixture_overrides

Release any overrides on a fixture, or all fixtures. Propagates to all controllers in a project.

clear_fixture_overrides(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Optional. Fixture number. If not provided, all overrides are cleared.

	1



	fade

	float

	Optional. Fade time in which to release overrides, in seconds.

	2.0








clear_all_overrides

Release all overrides. Propagates to all controllers in a project.

clear_all_overrides(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Fade time in which to release overrides, in seconds.

	2.0











            

          

      

      

    

  

    
      
          
            
  




Project


Functions


get_project_info

Returns data about the current project.

get_project_info(callback)

Returns an object with the same attributes as in the HTTP GET response.

For example:

Query.get_project_info(project => {
  const author = project.author
})










            

          

      

      

    

  

    
      
          
            
  




Protocol


Functions


get_protocols

Returns all the universes in the project on the queried controller.

get_protocols(callback)

Returns an object with a single outputs attribute, which has an array value. Each item in the array is a Protocol object with the same attributes as in the HTTP GET response.

For example:

Query.get_protocols(p => {
  const protocol_name = p.outputs[0].name // name of the first protocol
})










            

          

      

      

    

  

    
      
          
            
  




RDM Discovery


Functions


start_rdm_discovery

Request to start a full RDM discovery. Results are available via subscribe_rdm_discovery.

start_rdm_discovery(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.






            

          

      

      

    

  

    
      
          
            
  




RDM Get


Functions


start_rdm_get

Request to start an RDM Get operations. Results are available via subscribe_rdm_get_set.

start_rdm_get(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.






            

          

      

      

    

  

    
      
          
            
  




RDM Set


Functions


start_rdm_set

Request to start an RDM Set operations. Results are available via subscribe_rdm_get_set.

start_rdm_set(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.






            

          

      

      

    

  

    
      
          
            
  




Remote Device


Functions


get_remote_device_info

Returns data about all the remote devices in the project.

get_remote_device_info(callback)

Returns an object with a single remote_devices attribute, which has an array value. Each item in the array is a Remote Device object with the same attributes as in the HTTP GET response.

For example:

Query.get_remote_device_info(r => {
  const type = r.remote_devices[0].type // type of the first remote device
})










            

          

      

      

    

  

    
      
          
            
  




Replication


Functions


get_replication

Returns data about the install replication.

get_replication(callback)

Returns an object with the same attributes as in the HTTP GET response.






            

          

      

      

    

  

    
      
          
            
  




Scene


Functions


start_scene

start_scene(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Scene number

	5






For callback please see JavaScript Command Callback.



release_scene

release_scene(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Scene number

	5



	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0






For callback please see JavaScript Command Callback.



toggle_scene

toggle_scene(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Scene number

	5



	fade

	float

	Optional. The release fade time in seconds to apply if the toggle action results in the scene being released. If not provided, the default fade time will be used.

	2.0






For callback please see JavaScript Command Callback.



release_all_scenes

release_all_scenes(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0



	group

	string

	Optional. Scene group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A.

	"B"






For callback please see JavaScript Command Callback.



release_all

Release all timelines and scenes. Propagates to all controllers in a project.

release_all(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0



	group

	string

	Optional. Timeline/Scene group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A.

	"B"






For callback please see JavaScript Command Callback.



get_scene_info

Returns data about the scenes in the project and their state on the controller.

get_scene_info(callback[, num])

Returns an object with a single scenes attribute, which has an array value. Each item in the array is a Scene object with the same attributes as in the HTTP GET response.

num can be used to filter which scenes are returned and is expected to be a JSON object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	string or integer

	Define the numbers of the scene that should be returned

	"1,2,5-9" or 5






For example:

Query.get_scene_info(s => {
  let name = s.scenes[0].name // name of the first scene returned
}, {"num":"1,2-5"})








JavaScript Command Callback

Functions in the JavaScript API that perform actions on the controller, e.g. start_timeline, have an optional callback argument. This expects a function, which is called when a response to the underlying HTTP API request is received. Its argument, if non-null, is the response body. If the content type of the response was "application/json" then the argument will be an object - the result of parsing the body as JSON.





            

          

      

      

    

  

    
      
          
            
  




System


Functions


get_system_info

get_system_info(callback)

Returns an object with the same attributes as in the HTTP GET response.

For example:

Query.get_system_info(system => {
  const capacity = system.channel_capacity
})










            

          

      

      

    

  

    
      
          
            
  




Temperature


Functions


get_temperature

get_temperature(callback)

Returns an object with the same attributes as in the HTTP GET response.

For example:

Query.get_temperature(temp => {
  const ambient = temp.ambient_temp
})










            

          

      

      

    

  

    
      
          
            
  




Text Slots


Functions


set_text_slot

Set the value of a text slot used in the project, which will propagate to all controllers in a project.

set_text_slot(params, callback)

params is expected to be an object with the same attributes as the HTTP PUT request.



get_text_slot

Returns data about the text slots in the project and their current values.

get_text_slot(callback[, filter])

Returns an object with a single text_slots attribute, which has an array value. Each item in the array is a Text Slot object with the same attributes as in the HTTP GET response.

filter can be used to filter which text slots are returned and is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	names

	string or array

	Define the names of the text slots that should be returned, either as a single string or an array of strings

	["test_slot1","anotherSlot"] or "test_slot1"






For example:

Query.get_text_slot(t => {
  let value = t.text_slots[0].value // value of the first text slot returned
}, {"names":["test_slot1","test_slot2"]})










            

          

      

      

    

  

    
      
          
            
  




Time


Functions


get_current_time

get_current_time(callback)

Returns an object with the same attributes as in the GET GET response.

For example:

Query.get_current_time(time => {
  const uptime = time.uptime
})










            

          

      

      

    

  

    
      
          
            
  




Timeline


Functions


start_timeline

start_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	5






For callback please see JavaScript Command Callback.



release_timeline

release_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	5



	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0






For callback please see JavaScript Command Callback.



toggle_timeline

toggle_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	5



	fade

	float

	Optional. The release fade time in seconds to apply if the toggle action results in the timeline being released. If not provided, the default fade time will be used.

	2.0






For callback please see JavaScript Command Callback.



pause_timeline

pause_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	5






For callback please see JavaScript Command Callback.



resume_timeline

resume_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	5






For callback please see JavaScript Command Callback.



pause_all

Pause all timelines in the project which are currently running. Propagates to all controllers in a project.

pause_all(callback)

For callback please see JavaScript Command Callback.



resume_all

Resume all timelines in the project which are currently paused. Propagates to all controllers in a project.

resume_all(callback)

For callback please see JavaScript Command Callback.



release_all_timelines

release_all_timelines(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0



	group

	string

	Optional. Timeline group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A.

	"B"






For callback please see JavaScript Command Callback.



release_all

Release all timelines and scenes. Propagates to all controllers in a project.

release_all(params, callback)

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0



	group

	string

	Optional. Timeline/Scene group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A.

	"B"






For callback please see JavaScript Command Callback.



set_timeline_rate

set_timeline_rate(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	5



	rate

	string

	A string containing a floating point number or a bounded integer, where 1.0 means the timeline’s default rate.

	"0.1" or "10:100"






For callback please see JavaScript Command Callback.



set_timeline_position

set_timeline_position(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	5



	position

	string

	A string containing a floating point number or a bounded integer, representing a fraction of the timeline length.

	"0.1" or "10:100"






For callback please see JavaScript Command Callback.



get_timeline_info

get_timeline_info(callback[, num])

Returns data about the timelines in the project and their state on the controller.

Returns an object with a single timelines attribute, which has an array value. Each item in the array is a Timeline object with the same attributes as in the HTTP GET response.

num can be used to filter which timelines are returned and is expected to be an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	string or integer

	Define the numbers of the timeline that should be returned

	"1,2,5-9" or 5






For example:

Query.get_timeline_info(t => {
  let name = t.timelines[0].name // name of the first timeline returned
}, {"num":"1-4"})








JavaScript Command Callback

Functions in the JavaScript API that perform actions on the controller, e.g. start_timeline, have an optional callback argument. This expects a function, which is called when a response to the underlying HTTP API request is received. Its argument, if non-null, is the response body. If the content type of the response was "application/json" then the argument will be an object - the result of parsing the body as JSON.





            

          

      

      

    

  

    
      
          
            
  




Trigger


Functions


fire_trigger

fire_trigger(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.



get_trigger_info

get_trigger_info(callback[, type])

Returns an object with a single triggers attribute, which has an array value. Each item in the array is a Trigger object with the same attributes as in the HTTP GET response.

type is expected to be a string and can be used to filter the type of trigger returned. For example, "Timeline Started" would return only Timeline Started triggers in the project.

For example:

Query.get_trigger_info(t => {
  let name = t.triggers[0].name // name of first startup trigger returned
}, "Startup")










            

          

      

      

    

  

    
      
          
            
  




Websocket Subscriptions

Websocket subscriptions allow data to be pushed to the web client whenever there is a change within the project. The query.js library includes functions with callbacks to subscribe to each channel and return any data received.


Functions


subscribe_timeline_status

Subscribe to changes in timeline status.

subscribe_timeline_status(callback)

The callback is called each time a timeline changes state on the controller. Each time it is passed an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Timeline number

	1



	state

	string

	The new state of the timeline: none, running, paused, holding_at_end, released

	"running"



	onstage

	boolean

	Whether the timeline is currently affecting the output of any fixtures in the project.

	true



	position

	integer

	Current time position of the timeline playback, in milliseconds

	5000






For example:

Query.subscribe_timeline_status(t => {
  alert(t.num + ": " + t.state)
})







subscribe_scene_status

Subscribe to changes in scene status.

subscribe_scene_status(callback)

The callback is called each time a scene changes state on the controller. Each time it is passed an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Scene number

	1



	state

	string

	The new state of the scene: none, started, released

	"started"



	onstage

	boolean

	Whether the scene is currently affecting the output of any fixtures in the project.

	true






For example:

Query.subscribe_scene_status(s => {
  alert(s.num + ": " + s.state)
})







subscribe_group_status

Subscribe to changes in group level, as set by the Master Intensity action.

subscribe_group_status(callback)

The callback is called each time the group master level changes on the controller. Each time it is passed an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Group number

	1



	name

	string

	Group name

	"Group 1"



	level

	integer

	New master intensity level of the group: 0-255

	128






For example:

Query.subscribe_group_status(g => {
  alert(g.num + ": " + g.level)
})







subscribe_remote_device_status

Subscribe to changes in remote device online/offline status.

subscribe_remote_device_status(callback)

The callback is called each time the remote device online/offline status changes. Each time it is passed an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	num

	integer

	Remote device number

	1



	type

	string

	Type of remote device: RIO 80, RIO 44, RIO 08, BPS, RIO A, RIO D, EDN 20, EDN 10

	"RIO 80"



	online

	boolean

	New online state of the remote device

	true



	serial

	string

	Remove device serial number

	"001001"






For example:

Query.subscribe_remote_device_status(r => {
  alert(r.num + ": " + (r.online ? "online" : "offline"))
})







subscribe_beacon

Subscribe to changes in the device beacon.

subscribe_beacon(callback)

The callback is called each time the controller beacon status changes. Each time it is passed an object with the following attributes:









	Attribute

	Value Type

	Description

	Value Example





	on

	boolean

	New beacon status

	true






For example:

Query.subscribe_beacon(b => {
  alert(b.on ? "Beacon turned on" : "Beacon turned off")
})







subscribe_lua

The receiver for the push_to_web() Lua function.

subscribe_lua(callback)

The callback is called each time a script on the controller calls the push_to_web() function. Each time it is passed an object with a single attribute - the name or key string passed as the first argument to push_to_web(). The value of this attribute is the second argument passed to push_to_web(), converted to a string.

For example, if a project needs to send a touch slider level to the web interface, it might have the following in a trigger Lua script:

level = getMySliderLevel() -- user-defined function to get the current slider level
push_to_web("slider_level", level) -- invoke callbacks on subscribers





If level is equal to e.g. 56 then the object passed the JavaScript callback will be:

{
  "slider_level": "56"
}





And the subscription could be setup as follows:

Query.subscribe_lua(l => {
 key = Object.keys(l)[0] // "slider_level" in the above example
 value = l.key           // "56" in the above example
 alert(key + ": " + value)
})







subscribe_rdm_discovery

Subscribe for results from RDM discovery operations.

subscribe_rdm_discovery(callback)

The callback is called every time an RDM device is found during an RDM discovery operation, and to announce when the RDM discovery operation is finished or has been cancelled. The callback is passed an object with the following attributes:








	Attribute

	Value Type

	Description





	message_type

	string

	Categorises the message, defining what data is present, if any (see below).



	universe

	string

	The universe on which the RDM operation is acting, in the Universe Key String Format.



	data

	object

	Optional. Data appropriate for the message type.







Device found

"message_type" : "device_found"

The data object will have the following attributes:








	Attribute

	Value Type

	Description





	device_info

	RDM Device Info

	RDM device info from the discovered device.



	fixture_num

	integer

	User number of the fixture in the project with the same DMX address and footprint as the discovered device, or null if there is no matching fixture in the project.








Discovery finished

"message_type" : "finished"

The data object will not be present, or will be empty.



Discovery cancelled

"message_type" : "cancelled"

The data object will have the following attributes:








	Attribute

	Value Type

	Description





	error

	string

	A description of why the discovery was cancelled.









subscribe_rdm_get_set

Subscribe for results from RDM Get and Set operations.

subscribe_rdm_get_set(callback)

The callback is called to provide the response from RDM Get and Set operations, and to announce when the RDM operation is finished or has been cancelled. The callback is passed an object with the following attributes:








	Attribute

	Value Type

	Description





	message_type

	string

	Categorises the message, defining what data is present, if any (see below).



	universe

	string

	The universe on which the RDM operation is acting, in the Universe Key String Format.



	device_id

	string

	Format is {manuId}:{deviceId}(:{subId})
where {manuId} is a padded unsigned hexadecimal integer of width 4, lowercase, e.g. 072c;
{deviceId} is a padded unsigned hexadecimal integer of width 8, lowercase, e.g. 0004fe02;
{subId} is an optional unsigned decimal integer.



	pid

	string

	RDM PID as a human-readable string, e.g. DEVICE_INFO, or a string containing the hex representation of the enum value of the PID as defined by the RDM standard, e.g. "c1".



	data

	object

	Optional. Data appropriate for the message type.







Get Finished

"message_type" : "get_finished"

The GET operation indicated by the PID has finished. No data object is expected.



Set Finished

"message_type" : "set_finished"

The SET operation indicated by the PID has finished. No data object is expected.



Get/Set result error

"message_type" : "result_error"

The data object will have the following attributes:








	Attribute

	Value Type

	Description





	error

	string

	Description of the error with the response.








Get/Set operation cancelled

"message_type" : "get_cancelled"
"message_type" : "set_cancelled"

The data object will have the following attributes:








	Attribute

	Value Type

	Description





	error

	string

	Description of why the operation was cancelled.








Get/Set Result

"message_type" : "result"

Provides the results of the operation, parsed from the response from the device. The data object will be appropriate for the PID. If pid is a human-readable string, e.g. DEVICE_INFO then data is described under RDM PID result data. Otherwise, if pid is the hex representation of the enum value of a PID, then data will have one key, raw, the value of which will be the base64-encoded raw payload data received from the device.


RDM PID result data

When the object passed to the subscribe_rdm_get_set callback has "message_type": "result" and where pid is a human-readable string, e.g. DEVICE_INFO, the format of the data object is described in one of the following sections.


Get Communication Status (COMMS_STATUS)

Following a successful GET operation for COMMS_STATUS, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	short_message - number (16 bit)


	length_mismatch - number (16 bit)


	checksum_fail - number (16 bit)






Get Status Messages (STATUS_MESSAGES)

Following a successful GET operation for STATUS_MESSAGES, the data object in the subscribe_rdm_get_set callback argument will have a status_messages attribute with an array value, the items of which will each have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	sub_device_id - number (16 bit)


	status_type - number (8 bit)


	status_message_id - number (16 bit)


	data_value_1 - number (16 bit)


	data_value_2 - number (16 bit)






Get Supported Parameters (SUPPORTED_PARAMETERS)

Following a successful GET operation for SUPPORTED_PARAMETERS, the data object in the subscribe_rdm_get_set callback argument will have a supported_parameters attribute with an array value. The array will contain numbers, corresponding to the 16 bit parameter IDs supported by the RDM device, as described in the RDM specification.



Get Parameter Description (PARAMETER_DESCRIPTION)

Following a successful GET operation for PARAMETER_DESCRIPTION, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	pid_requested - number (16 bit)


	pdl_size - number (8 bit)


	data_type - number (8 bit)


	command_class - number (8 bit)


	type - number (8 bit)


	unit - number (8 bit)


	prefix - number (8 bit)


	min_valid_value - number (32 bit)


	max_valid_value - number (32 bit)


	default_value - number (32 bit)


	description - string (ASCII, max 32 characters)






Get Device Info (DEVICE_INFO)

Following a successful GET operation for DEVICE_INFO, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	rdm_protocol_version - number (16 bit)


	device_model_id - number (16 bit)


	product_category - number (16 bit)


	software_version_id - number (32 bit)


	dmx512_footprint - number (16 bit)


	dmx512_personality - number (16 bit)


	start_address - number (16 bit)


	sub_device_count - number (16 bit)


	sensor_count - number (8 bit)






Get Device Model Description (DEVICE_MODEL_DESCRIPTION)

Following a successful GET operation for DEVICE_MODEL_DESCRIPTION, the data object in the subscribe_rdm_get_set callback argument will have a model_description attribute with a string value. The string will be the ASCII model description, 0-32 characters, as described in the RDM specification.



Get Manufacturer Label (MANUFACTURER_LABEL)

Following a successful GET operation for MANUFACTURER_LABEL, the data object in the subscribe_rdm_get_set callback argument will have a manufacturer_label attribute with a string value. The string will be the ASCII manufacturer description, 0-32 characters, as described in the RDM specification.



Get/Set Device Label (DEVICE_LABEL)

Following a successful GET operation for DEVICE_LABEL, the data object in the subscribe_rdm_get_set callback argument will have a device_label attribute with a string value. The string will be the current ASCII device label, 0-32 characters, as described in the RDM specification.

No data is expected in the response for a SET operation.



Get/Set Factory Defaults (FACTORY_DEFAULTS)

Following a successful GET operation for FACTORY_DEFAULTS, the data object in the subscribe_rdm_get_set callback argument will have a factory_defaults attribute with a boolean value, indicating whether the device is currently set to is factory defaults.

No data is expected in the response for a SET operation.



Get Software Version Label (SOFTWARE_VERSION_LABEL)

Following a successful GET operation for SOFTWARE_VERSION_LABEL, the data object in the subscribe_rdm_get_set callback argument will have a software_version_label attribute with a string value. The string will be the ASCII software version label, 0-32 characters, as described in the RDM specification.



Get Boot Software Version ID (BOOT_SOFTWARE_VERSION_ID)

Following a successful GET operation for BOOT_SOFTWARE_VERSION_ID, the data object in the subscribe_rdm_get_set callback argument will have a boot_software_version_id attribute with a 32 bit number value, as described in the RDM specification.



Get Boot Software Version Label (BOOT_SOFTWARE_VERSION_LABEL)

Following a successful GET operation for BOOT_SOFTWARE_VERSION_LABEL, the data object in the subscribe_rdm_get_set callback argument will have a boot_software_version_label attribute with a string value. The string will be the ASCII boot version label, 0-32 characters, as described in the RDM specification.



Get/Set DMX512 Personality (DMX_PERSONALITY)

Following a successful GET operation for DMX_PERSONALITY, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	current_personality - number (8 bit)


	num_personalities - number (8 bit)




No data is expected in the response for a SET operation.



Get DMX512 Personality Description (DMX_PERSONALITY_DESCRIPTION)

Following a successful GET operation for DMX_PERSONALITY_DESCRIPTION, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	personality_requested - number (8 bit)


	dmx512_slots_required - number (16 bit)


	description - string (ASCII, 0-32 characters)






Get/Set DMX512 Starting Address (DMX_START_ADDRESS)

Following a successful GET operation for DMX_START_ADDRESS, the data object in the subscribe_rdm_get_set callback argument will have a dmx512_address attribute with a 16 bit number value, as described in the RDM specification.

No data is expected in the response for a SET operation.



Get Slot Info (SLOT_INFO)

Following a successful GET operation for SLOT_INFO, the data object in the subscribe_rdm_get_set callback argument will have a slot_info attribute with an array value, the items of which will each have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	slot_offset - number (16 bit)


	slot_type - number (8 bit)


	slot_label_id - number (16 bit)






Get Slot Description (SLOT_DESCRIPTION)

Following a successful GET operation for SLOT_DESCRIPTION, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	slot_number_requested - number (16 bit)


	description - string (ASCII, 0-32 characters)






Get Sensor Definition (SENSOR_DEFINITION)

Following a successful GET operation for SENSOR_DEFINITION, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	sensor_number_requested - number (8 bit)


	type - number (8 bit)


	unit - number (8 bit)


	prefix - number (8 bit)


	range_minimum_value - number (16 bit)


	range_maximum_value - number (16 bit)


	normal_minimum_value - number (16 bit)


	normal_maximum_value - number (16 bit)


	recorded_value_support - number (8 bit)


	description - string (ASCII, 0-32 characters)






Get/Set Sensor (SENSOR_VALUE)

Following a successful GET or SET operation for SENSOR_VALUE, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	sensor_number_requested - number (8 bit)


	present_value - number (16 bit)


	lowest_detected_value - number (16 bit)


	highest_detected_value - number (16 bit)


	recorded_value - number (16 bit)






Get/Set Lamp Hours (LAMP_HOURS)

Following a successful GET or SET operation for LAMP_HOURS, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	lamp_hours - number (32 bit)






Get/Set Lamp State (LAMP_STATE)

Following a successful GET or SET operation for LAMP_STATE, the data object in the subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of the same names in the RDM specification for this response:


	lamp_state - number (8 bit)










Universe Key String Format

A universe key string for RDM takes the form:


	protocol:index for protocols dmx and art-net;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.




Where:


	remoteDeviceType can be edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"edn:edn20:1:5"








            

          

      

      

    

  

    
      
          
            
  




Lua API

Mosaic controllers offer a Lua API providing access to system information, playback functions and trigger operations.





Standard Libraries

The following standard Libraries are imported


	Basic library [https://www.lua.org/manual/5.3/manual.html#6.1]


	Package library [https://www.lua.org/manual/5.3/manual.html#6.3]


	String manipulation [https://www.lua.org/manual/5.3/manual.html#6.4]


	Basic UTF-8 support [https://www.lua.org/manual/5.3/manual.html#6.5]


	Table manipulation [https://www.lua.org/manual/5.3/manual.html#6.6]


	Mathematical functions [https://www.lua.org/manual/5.3/manual.html#6.7]


	Input and output [https://www.lua.org/manual/5.3/manual.html#6.8]






Functions

The following functions are available in trigger action scripts and in IO modules. In trigger action scripts they are added directly to the environment; in IO modules they are available in the controller namespace.


Queries


get_current_project

Returns a Project object.

For example:

project_name = get_current_project().name







get_current_replication

Returns a Replication object.

For example:

rep_name = get_current_replication().name







get_location

Returns a Location object.

For example:

lat = get_location().lat







get_timeline

get_timeline(timelineNum)

Returns a single Timeline object for the timeline with user number timelineNum.

For example:

tl = get_timeline(1)
name = tl.name
state = tl.state

if (tl.source_bus == TCODE_1) then
  -- do something
end







get_scene

get_scene(sceneNum)

Returns a single Scene object for the scene with user number sceneNum.

For example:

scn = get_scene(1)
name = scn.name
state = scn.state







get_group

get_group(groupNum)

Returns a single Group object for the group with user number groupNum.

For example:

grp = get_group(1)
name = grp.name






Note

Passing 0 as groupNum will return Group for the All Fixtures group. This can also be used on Atlas family projects to master the intensity of the entire unit.





get_fixture_override

get_fixture_override(fixtureNum)

Returns an Override object for the fixture with user number fixtureNum.

For example:

-- Get override for fixture 22
override = get_fixture_override(22)
-- Set the override colour to red (and full intensity)
override:set_irgb(255, 255, 0, 0)







get_group_override

get_group_override(groupNum)

Returns an Override object for the group with user number groupNum.


Note

Passing 0 as groupNum will return an Override for the All Fixtures group.



For example:

-- Get override for group 3
override = get_group_override(3)
-- Set the intensity to 50% in 2 seconds
override:set_intensity(128, 2.0)







get_current_controller

Returns the Controller that the script is being executed on.

For example:

cont = get_current_controller()
name = cont.name







get_network_primary

Returns the Controller in the project that is set as the network primary.



is_controller_online

is_controller_online(controllerNum)

Returns true if the controller with user number controllerNum has been discovered, or false otherwise.

For example:

if (is_controller_online(2)) then
  log("Controller 2 is online")
else
  log("Controller 2 is offline")
end







get_temperature

Returns a Temperature object with measurements from the controller’s temperature sensors.

For example:

temp = get_temperature()
log(temp.ambient_temp)







get_rio

get_rio(type, num)

Returns a RIO object representing a RIO matching the parameters:


	type can be one of the constants RIO80, RIO44 or RIO80.


	num is the remote device number within the Designer project.




For example:

rio = get_rio(RIO44, 1)
input = rio:get_input(1)
output_state = rio:get_output(1)






Note

The constants for type are in the controller namespace within IO modules, e.g. controller.RIO44.





get_bps

get_bps(num)

Returns a BPS object with remote device number num.

For example:

bps = get_bps(1)
btn = bps:get_state(1)







get_text_slot

get_text_slot(slotName)

Returns the value of the text slot with name slotName. If no such text slot exists in the project then an empty string will be returned.

For example:

log(get_text_slot("my text slot"))







get_dmx_universe

get_dmx_universe(idx)

Returns a Universe object for the DMX universe with number idx.

For example:

uni = get_dmx_universe(1) -- get DMX Universe 1
level = uni:get_channel_value(1) -- get channel 1 from the returned universe







get_artnet_universe

get_artnet_universe(idx)

Returns a Universe object for the Art-Net universe with number idx.



get_pathport_universe

get_pathport_universe(idx)

Returns a Universe object for the Pathport universe with number idx.



get_sacn_universe

get_sacn_universe(idx)

Returns a Universe object for the sACN universe with number idx.



get_kinet_universe

get_kinet_universe(power_supply_num, port_num)

Returns a Universe object for the KiNET power supply port matching the parameters:


	power_supply_num is the KiNET power supply number in the project.


	port_num is the port number of the KiNET power supply.






get_edn_universe

get_edn_universe(remote_device_type, remote_device_num, port_num)

Returns a Universe object for the EDN output matching the parameter:


	remote_device_type is be one of the constants EDN10 or EDN 20.


	remote_device_num is the remote device number of the EDN in the project.


	port_num is the DMX output port number of the EDN.





Note

The constants for remote_device_type are in the controller namespace within IO modules, e.g. controller.EDN20.





get_input

get_input(idx)

Returns the state of the controller’s input numbered idx as a boolean (for digital inputs) or an integer (for analog inputs, 0-100).

For example:

in1 = get_input(1)

if in1 == true then
  log("Input 1 is digital and high")
elseif in1 == false then
  log("Input 1 is digital and low")
else
  log("Input 1 is analog at " .. in1)
end







get_dmx_input

get_dmx_input(channel)

Returns the value of the DMX channel number as an integer. If no DXM input is detected then nil will be returned.



get_trigger_variable

get_trigger_variable(idx)

Returns the trigger variable at index idx as a Variant.

For example:

-- Use with a Touch Colour Move Trigger
red = get_trigger_variable(1).integer
green = get_trigger_variable(2).integer
blue = get_trigger_variable(3).integer

-- Use with Serial Input "<s>\r\n"
input = get_trigger_variable(1).string







get_trigger_number

get_trigger_number()

Returns the number of the trigger that ran this script. Will return nil if called from another context.



get_resource_path

get_resource_path(filename)

Returns the path to the resource file, where filename is the name of a file on the controller’s internal storage.

For example:

dofile(get_resource_path("my_lua_file.lua"))







get_content_target


Note

Only supported on Atlas and Atlas Pro.



On a Atlas: get_content_target(compositionNum)

On a Atlas Pro: get_content_target(compositionNum, type)

Returns a Content Target object representing the Content Target in the project that matches the parameters:


	compositionNum is the user number of the composition containing the desired Content Target.


	type describes the Content Target type and can be one of the constants PRIMARY, SECONDARY or TARGET_3 … TARGET_8.





Note

The constants for type are in the controller namespace within IO modules, e.g. controller.TARGET_5.



Will return nil if no matching Content Target exists in the project.

For example, on a Atlas:

target = get_content_target(1)
current_level = target.master_intensity_level





And on a Atlas Pro:

target = get_content_target(1, PRIMARY)
current_angle = target.rotation_offset







get_adjustment


Note

Only supported on Atlas Pro.



get_adjustment(num)

Returns an Adjustment Target object representing the Adjustment Target in the project with the integer user number num:

Will return nil if no matching Adjustment Target exists in the project.

For example:

target = get_adjustment(1)
target:transition_x_position(10,1,5) -- Move 10 pixels right in 5 seconds
target:transition_y_position(10,1,5) -- Move 10 pixels down in 5 seconds
target:transition_rotation(90,1,5) -- Rotate by 90 degrees in 5 seconds







get_log_level

Returns the current log level of the controller, which can be one of the following constants:


	LOG_DEBUG


	LOG_TERSE


	LOG_NORMAL


	LOG_EXTENDED


	LOG_VERBOSE


	LOG_CRITICAL





Note

These constants are in the controller namespace within IO modules, e.g. controller.LOG_NORMAL.





get_syslog_enabled

Returns true if Syslog is enabled, or false otherwise.



get_syslog_ip_address

Returns the IP address of the Syslog server as a string.



get_ntp_enabled

Returns true if NTP is enabled.



get_ntp_ip_address

Returns the IP address of the NTP server as a string.




Actions


log

log([level, ]message)

Write a message to the controller’s log according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	level

	Integer value of constants: LOG_DEBUG, LOG_TERSE, LOG_NORMAL, LOG_EXTENDED, LOG_VERBOSE, LOG_CRITICAL; defaults to LOG_NORMAL

	Optional. The log level to apply to the message.

	LOG_VERBOSE



	message

	string

	The message to add to the log.

	"Your log message"






For example:

log(LOG_CRITICAL, "This is a critical message!") -- logs a message at Critical log level
log("This is a normal message.") -- logs a message at Normal log level.







set_log_level

set_log_level(log_level)

Changes the log level of the controller, showing more or less detailed information, where log_level is an integer value of the constants:


	LOG_DEBUG (5)


	LOG_TERSE (4)


	LOG_NORMAL (3)


	LOG_EXTENDED (2)


	LOG_VERBOSE (1)


	LOG_CRITICAL (0)






pause_all

Pause all timelines in the project.



resume_all

Resume all timelines in the project.



release_all

release_all([fade,] [group])

Release all timelines and scenes in the project.


Note


	You can provide:
	
	No arguments - this will release all with the default fade time.


	A fade time, which will be used to release all.


	Or, both a fade time and a group.


















	Parameter

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0



	group

	string

	Optional. Group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A.

	"B"








release_all_timelines

release_all_timelines([fade,] [group])

Release all timelines in the project.


Note


	You can provide:
	
	No arguments - this will release all with the default fade time.


	A fade time, which will be used to release all.


	Or, both a fade time and a group.


















	Parameter

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0



	group

	string

	Optional. Group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A.

	"B"








release_all_scenes

release_all_scenes([fade,] [group])

Release all scenes in the project.


Note


	You can provide:
	
	No arguments - this will release all with the default fade time.


	A fade time, which will be used to release all.


	Or, both a fade time and a group.


















	Parameter

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0



	group

	string

	Optional. Group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A.

	"B"








clear_all_overrides

clear_all_overrides([fade])

Removes all overrides from all fixtures and groups. Optionally specify a fade time in seconds as a float, e.g. 2.0.



enqueue_trigger

enqueue_trigger(num[,var...])

Queue trigger number num to be fired on the next controller playback refresh. The trigger’s conditions will be tested. Optional variables var can be passed in as additional arguments.

For example:

-- enqueue trigger 2, passing in three variables: 255, 4.0 and "string"
enqueue_trigger(2,255,4.0,"string")







enqueue_local_trigger

enqueue_local_trigger(num[,var...])

Same behaviour as for enqueue_trigger but the trigger num will only be queued on the controller that ran the function - the trigger will not propagate to other controllers in the project.



force_trigger

force_trigger(num[,var...])

Queue trigger number num to be fired on the next controller playback refresh without testing the trigger’s conditions - the trigger actions will always run. Optional variables var can be passed in as additional arguments.

For example:

-- force the execution of trigger 2's actions
-- pass in three variables: 255, 4.0 and "string"
force_trigger(2,255,4.0,"string")







force_local_trigger

force_local_trigger(num[,var...])

Same behaviour as for force_trigger but the trigger num will only be queued on the controller that ran the function - the trigger will not propagate to other controllers in the project.



set_text_slot

set_text_slot(name, value)

Set the value of the text slot named name in the project to value, for example:

-- Set "My slot" to value "Hello world!"
set_text_slot("My slot", "Hello world!")







set_control_value

set_control_value(name, [index,] value[, emitChange])

Set the value on a Touch Slider or Colour Picker according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	name

	string

	The Key of the Touch Control.

	slider001



	index

	integer (1-3)

	Optional. Axis of movement - a slider has 1; a colour picker has 3. Will default to 1 if this parameter isn’t specified.

	1



	value

	integer (0-255)

	New value to set.

	128



	emitChange

	boolean

	Optional. Whether to fire associated triggers as a result of the control value change. Defaults to false.

	true






For example:

-- Set slider001 to half (and don't fire any associated triggers)
set_control_value("slider001", 128)
-- Set the second axis (green) to full on colour020
set_control_value("colour020", 2, 255)







set_control_state

set_control_state(name, state)

Set the state on a Touch control according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	name

	string

	The Key of the Touch Control.

	slider001



	state

	string

	The name of the state as defined in the Touch theme.

	Green






For example:

-- Set slider001 to a state called "Green"
set_control_state("slider001", "Green")







set_control_caption

set_control_caption(name, caption)

Set the caption on a Touch control according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	name

	string

	The Key of the Touch Control.

	button001



	caption

	string

	The text to display as the control’s caption.

	On






For example:

-- Set button001's caption to "On"
set_control_caption("button001", "On")







set_interface_page

set_interface_page(number[, transition])

Change the current page on the Touch interface according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	number

	integer

	Touch interface page to change to.

	2



	transition

	integer

	Optional page transition. Integer value of constants: SNAP, PAN_LEFT, PAN_RIGHT

	PAN_LEFT







Note

Must be executed on the MTPC that hosts the interface.



For example:

-- Change the touch screen interface to page 4 with a snap transition
set_interface_page(4, SNAP)







set_interface_enabled

set_interface_enabled([enabled])

Enable/disable the touchscreen, according to the optional boolean parameter enabled (default: true).


Note

Must be executed on the MTPC that hosts the interface.



For example:

-- Disable the touchscreen
set_interface_enabled(false)







set_interface_locked

set_interface_locked([lock])

Lock/unlock the touchscreen, according to the optional boolean parameter lock (default: true).


Note

Must be executed on the MTPC that hosts the interface.



For example:

-- Lock the touchscreen
set_interface_locked()
-- Unlock the touchscreen
set_interface_locked(false)







push_to_web

push_to_web(name, value)

Sends data as JSON to clients who are subscribed to the relevant websocket channel, e.g. custom web interfaces using subscribe_lua in the query.js library. The parameters are as follows:









	Parameter

	Value Type

	Description

	Value Example





	name

	string

	JSON attribute name

	"myVar"



	value

	Variant

	Value for the JSON, which will be sent as a string.

	"String value" or 1234






For example:

myData = 1234
-- Will push JSON object {"my_data":"1234"}
push_to_web("my_data", myData)







disable_output

disable_output(protocol)

Disables the output of a single protocol from the controller, where protocol is the integer value of the constants:


	DMX


	PATHPORT


	ARTNET


	KINET


	SACN


	DVI


	RIO_DMX


	EDN_DMX


	EDN_SPI




For example:

-- Disable the DMX output from the controller
disable_output(DMX)







enable_output

enable_output(protocol)

Enables the output of a single protocol from the controller, where protocol is the integer value of the constants defined for disable_output.

For example:

-- Enable the DMX output from the controller
enable_output(DMX)







set_timecode_bus_enabled

set_timecode_bus_enabled(bus[, enable])

Enable or disable a timecode bus, where bus is the integer value of the constants TCODE_1 … TCODE_6 and enable is a boolean, determining whether the bus is enabled (default true) or not.







            

          

      

      

    

  

    
      
          
            
  




Adjustment Target


Note

Only supported on Atlas Pro.



An Adjustment object is returned from get_adjustment.


Properties







	Property

	Value Type





	rotation_offset

	float



	x_position_offset

	float



	y_position_offset

	float






For example:

target = get_adjustment(1)
r_offset = target.rotation_offset







Member functions

The following are member functions of Adjustment objects.


transition_rotation

transition_rotation([angle[, count[, period[, delay[, useShortestPath]]]]])

Applies a rotation to the adjustment target according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	angle

	float

	Optional. Angle of rotation to transition to, in degrees. Defaults to zero.

	90.0



	count

	integer

	Number of times to repeat the rotation transformation.

	1



	period

	integer

	The period of the rotation, in seconds - the time to perform one count of the transformation.

	2



	delay

	integer

	Time to wait before starting the rotation, in seconds.

	0








transition_x_position

transition_x_position([x_offset[, count[, period[, delay]]]])

Moves the adjustment target along the x axis according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	x_offset

	float

	Optional. Offset to apply to the x position. Defaults to 0.

	25.0



	count

	integer

	Number of times to repeat the x translation.

	1



	period

	integer

	The period of the translation, in seconds - the time to perform one count of the transformation.

	2



	delay

	integer

	Time to wait before starting the translation, in seconds.

	0








transition_y_position

transition_y_position([x_offset[, count[, period[, delay]]]])

Moves the adjustment target along the y axis according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	y_offset

	float

	Optional. Offset to apply to the y position. Defaults to 0.

	25.0



	count

	integer

	Number of times to repeat the y translation.

	1



	period

	integer

	The period of the translation, in seconds - the time to perform one count of the transformation.

	2



	delay

	integer

	Time to wait before starting the translation, in seconds.

	0











            

          

      

      

    

  

    
      
          
            
  




BPS

A BPS object is returned from get_bps.


Member functions

The following are member functions of BPS objects.


get_state

get_state(buttonNum)

Returns the state of the button with integer number buttonNum, which can be one of the constants RELEASED, PRESSED, HELD or REPEAT.

For example:

bps = get_bps(1)
btn = bps:get_state(1)







set_led

set_led(button, effect[, intensity[, fade]])

Set the effect and intensity of a BPS button LED according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	button

	integer (1-8)

	Number of the BPS button to set an effect on

	1



	effect

	integer

	Integer value of constants: OFF, ON, SLOW_FLASH, FAST_FLASH, DOUBLE_FLASH, BLINK, PULSE, SINGLE, RAMP_ON, RAMP_OFF

	SLOW_FLASH



	intensity

	integer (0-255)

	Optional. Intensity level to set on the LED. If this parameter is not specified, full intensity will be set on the LED.

	255



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0






For example:

-- Set button 1 on BPS 1 to Fast Flash at full intensity
get_bps(1):set_led(1,FAST_FLASH,255)










            

          

      

      

    

  

    
      
          
            
  




Content Target


Note

Only supported on Atlas and Atlas Pro.



A ContentTarget object is returned from get_content_target.


Properties








	Property

	Value Type

	Description





	master_intensity_level

	Variant

	


	rotation_offset

	float

	Atlas Pro only



	x_position_offset

	float

	Atlas Pro only



	y_position_offset

	float

	Atlas Pro only






For example, on a Atlas:

target = get_content_target(1)
current_level = target.master_intensity_level





And on a Atlas Pro:

target = get_content_target(1, PRIMARY)
current_angle = target.rotation_offset







Member functions

The following are member functions of ContentTarget objects.


set_master_intensity

set_master_intensity(level[, fade[, delay]])

Masters the intensity of the content target according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	level

	float (0.0-1.0) or integer (0-255)

	Master level to set on the content target.

	0.5 or 128



	fade

	float

	Optional. Fade time to apply the intensity change, in seconds.

	2.0



	delay

	float

	Optional. Time to wait before applying the intensity change, in seconds.

	3.0






For example, on a Atlas:

-- Master the primary content target in composition 1 to 50% (128/255 = 0.5) in 3 seconds
get_content_target(1):set_master_intensity(128,3)





Or on a Atlas Pro:

-- Master the secondary content target in composition 2 to 100% in 2.5 seconds
get_content_target(2, SECONDARY):set_master_intensity(255,2.5)







transition_rotation


Note

Only supported on Atlas Pro.



transition_rotation([angle[, count[, period[, delay[, useShortestPath]]]]])

Applies a rotation to the content target according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	angle

	float

	Optional. Angle of rotation to transition to, in degrees. Defaults to zero.

	90.0



	count

	integer

	Number of times to repeat the rotation transformation.

	1



	period

	integer

	The period of the rotation, in seconds - the time to perform one count of the transformation.

	2



	delay

	integer

	Time to wait before starting the rotation, in seconds.

	0








transition_y_position

transition_y_position([y_offset[, count[, period[, delay]]]])

Moves the content target along the y axis according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	y_offset

	float

	Optional. Offset to apply to the y position. Defaults to 0.

	25.0



	count

	integer

	Number of times to repeat the y translation.

	1



	period

	integer

	The period of the translation, in seconds - the time to perform one count of the transformation.

	2



	delay

	integer

	Time to wait before starting the translation, in seconds.

	0











            

          

      

      

    

  

    
      
          
            
  




Controller

A Controller object is returned from e.g. get_current_controller.


Properties









	Property

	Value Type

	Description

	Value Example





	number

	integer

	Controller number

	1



	name

	string

	Controller name

	"Controller 1"



	vlan_tag

	string

	VLAN tag number as a string. "None" if there is no tag set

	"65535"



	is_network_primary

	boolean

	Whether this controller is set as the Network Primary in the project

	true






For example:

cont = get_current_controller()
name = cont.name









            

          

      

      

    

  

    
      
          
            
  




DateTime

A DateTime object is returned from e.g. System properties.


Properties








	Property

	Value Type

	Value Example





	year

	integer

	2022



	month

	integer

	12



	monthday

	integer

	3



	time_string

	string

	"11:35:32"



	date_string

	string

	"03 Dec 2022"



	weekday

	integer (0 => Sunday)

	0



	hour

	integer

	11



	minute

	integer

	35



	second

	integer

	32



	utc_timestamp

	integer

	1670045912










            

          

      

      

    

  

    
      
          
            
  




Group

A Group object is returned from get_group.


Properties









	Property

	Value Type

	Description

	Value Example





	name

	string

	Group name

	"Group 1"



	master_intensity_level

	Variant

	The intensity level that this group is currently being mastered to

	





For example:

grp = get_group(1)
name = grp.name







Member functions

The following are member functions of Group objects.


set_master_intensity

set_master_intensity(level[, fade[, delay]])

Masters the intensity of the group according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	level

	float (0.0-1.0) or integer (0-255)

	Master level to set on the group

	0.5 or 128



	fade

	float

	Optional. Fade time to apply the intensity change, in seconds

	2.0



	delay

	float

	Optional. Time to wait before applying the intensity change, in seconds

	3.0






For example:

-- Master group 1 to 50% (128/255 = 0.5) in 3 seconds
get_group(1):set_master_intensity(128,3)










            

          

      

      

    

  

    
      
          
            
  




Location

A Location object is returned from get_location.


Properties








	Property

	Value Type

	Value Example





	lat

	float

	51.512



	long

	float

	-0.303






For example:

lat = get_location().lat









            

          

      

      

    

  

    
      
          
            
  




Override

An Override object is returned from get_fixture_override and get_group_override.


Member functions

The following are member functions of Override objects.


set_irgb

set_irgb(intensity, red, green, blue, [fade, [path]])

Overrides the intensity, red, green and blue levels for the fixture or group according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	intensity

	integer (0-255)

	Intensity level to set as an override.

	128



	red

	integer (0-255)

	Red level to set as an override.

	128



	green

	integer (0-255)

	Green level to set as an override.

	128



	blue

	integer (0-255)

	Blue level to set as an override.

	128



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0



	path

	string

	Optional. Crossfade path to use when applying the override: Default, Linear, Start, End, Braked, Accelerated, Damped, Overshoot, Col At Start, Col At End, Int At Start, Int At End, Colour First, Intensity First

	"Linear"






For example:

-- Get override for fixture 22
override = get_fixture_override(22)
-- Set the override colour to red (and full intensity)
override:set_irgb(255, 255, 0, 0)







set_intensity

set_intensity(intensity, [fade, [path]])

Overrides the intensity level for the fixture or group according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	intensity

	integer (0-255)

	Intensity level to set as an override.

	128



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0



	path

	string

	Optional. Crossfade path to use when applying the override: Default, Linear, Start, End, Braked, Accelerated, Damped, Overshoot, Col At Start, Col At End, Int At Start, Int At End, Colour First, Intensity First

	"Linear"






For example:

-- Get override for group 3
override = get_group_override(3)
-- Set the intensity to 50% in 2 seconds
override:set_intensity(128, 2.0)







set_red

set_red(red, [fade, [path]])

Overrides the red level for the fixture or group according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	red

	integer (0-255)

	Red level to set as an override.

	128



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0



	path

	string

	Optional. Crossfade path to use when applying the override: Default, Linear, Start, End, Braked, Accelerated, Damped, Overshoot, Col At Start, Col At End, Int At Start, Int At End, Colour First, Intensity First

	"Linear"








set_green

set_green(green, [fade, [path]])

Overrides the green level for the fixture or group according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	green

	integer (0-255)

	Green level to set as an override.

	128



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0



	path

	string

	Optional. Crossfade path to use when applying the override: Default, Linear, Start, End, Braked, Accelerated, Damped, Overshoot, Col At Start, Col At End, Int At Start, Int At End, Colour First, Intensity First

	"Linear"








set_blue

set_blue(blue, [fade, [path]])

Overrides the blue level for the fixture or group according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	blue

	integer (0-255)

	Blue level to set as an override.

	128



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0



	path

	string

	Optional. Crossfade path to use when applying the override: Default, Linear, Start, End, Braked, Accelerated, Damped, Overshoot, Col At Start, Col At End, Int At Start, Int At End, Colour First, Intensity First

	"Linear"








set_temperature

set_temperature(temperature, [fade, [path]])

Overrides the temperature level for the fixture or group according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	temperature

	integer (0-255)

	Temperature level to set as an override.

	128



	fade

	float

	Optional. Fade time to apply the override change, in seconds.

	2.0



	path

	string

	Optional. Crossfade path to use when applying the override: Default, Linear, Start, End, Braked, Accelerated, Damped, Overshoot, Col At Start, Col At End, Int At Start, Int At End, Colour First, Intensity First

	"Linear"








clear

clear([fade])

Removes any override on the fixture or group. Optionally specify a fade time in seconds as a float, e.g. 2.0.

For example:

-- Clear the override on fixture 1
get_fixture_override(1):clear()





See also: clear_all_overrides.






            

          

      

      

    

  

    
      
          
            
  




Project

A Project object is returned from get_current_project.


Properties








	Property

	Value Type

	Value Example





	name

	string

	"Help Project"



	author

	string

	"Contoso"



	filename

	string

	"help_project_v1.pd2"



	unique_id

	string

	"{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"






For example:

project_name = get_current_project().name









            

          

      

      

    

  

    
      
          
            
  




Network 2

Information about the controller’s second network interface is available in the protocol_interface namespace. In trigger action scripts the protocol_interface namespace is added directly to the environment; in IO modules it is in the controller namespace, i.e. controller.protocol_interface.


Properties

The protocol_interface namespace has the following properties:








	Property

	Value Type

	Value Example





	has_interface

	boolean

	true



	is_up

	boolean

	true



	ip_address

	string

	"192.168.1.12"



	subnet_mask

	string

	"255.255.255.0"



	gateway

	string

	"192.168.1.1"






For example:

if protocol_interface.has_interface == true then
  ip = protocol_interface.ip_address
end









            

          

      

      

    

  

    
      
          
            
  




Replication

A Replication object is returned from get_current_replication.


Properties








	Property

	Value Type

	Value Example





	name

	string

	"Help Project"



	unique_id

	string

	"{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"






For example:

rep_name = get_current_replication().name









            

          

      

      

    

  

    
      
          
            
  




RIO

A RIO object is returned from get_rio.

For example:

rio = get_rio(RIO44, 1)
input = rio:get_input(1)
output_state = rio:get_output(1)






Member functions

The following are member functions of RIO objects.


get_input

get_input(inputNum)

Returns the state of the input with integer number inputNum as a boolean if the input is set to Digital or Contact Closure, or an integer if the input is set to Analog.

For example:

rio = get_rio(RIO44, 3)
input = rio:get_input(1)







get_output

get_output(outputNum)

Returns the state of the output with integer number outputNum as a boolean.

For example:

rio = get_rio(RIO44, 2)
output_state = rio:get_output(1)







set_output

set_output(outputNum, state)

Sets the output of a RIO to on or off according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	outputNum

	integer (1-8)

	Number of the RIO output to change the state of. Range depends on type of RIO.

	1



	state

	boolean or integer

	State to set the output to. Can be any of: 0, 1, true, false, ON or OFF

	OFF











            

          

      

      

    

  

    
      
          
            
  




Scene

A Scene object is returned from get_scene.


Properties









	Property

	Value Type

	Description

	Value Example





	name

	string

	Scene name

	"Scene 1"



	group

	string

	Scene group name (A through H or empty string)

	"A"



	state

	integer

	Integer value of constants: Scene.NONE, Scene.STARTED or Scene.RELEASED

	1



	onstage

	boolean

	Whether the scene is affecting output of any fixtures

	false



	custom_properties

	table

	Table keys and values correspond to custom property names and values

	





For example:

scn = get_scene(1)
name = scn.name
state = scn.state







Member functions

The following are member functions of Scene objects.


start

start()

Starts the scene. For example:

-- start scene 1
get_scene(1):start()







release

release([fade])

Releases the scene. Optionally specify a fade time in seconds as a float, e.g. 2.0.

For example:

-- release scene 3 with a fade of 1 second
get_scene(3):release(1.0)







toggle

toggle([fade])

Toggles the playback of the scene - if it’s running, release it; if it’s not running, start it. Optionally specify a release fade time in seconds as a float, e.g. 2.0.

For example:

-- toggle scene 2, releasing in time 3 secs if it's running
get_scene(2):release(3.0)










            

          

      

      

    

  

    
      
          
            
  




System

In trigger action scripts the system namespace is added directly to the environment; in IO modules it is in the controller namespace, i.e. controller.system.


Properties

The system namespace has the following properties:








	Property

	Value Type

	Value Example





	hardware_type

	string

	"lpc"



	channel_capacity

	integer

	512



	serial_number

	string

	"006321"



	memory_total

	string

	"12790Kb"



	memory_used

	string

	"24056Kb"



	memory_available

	string

	"103884Kb"



	storage_size

	string

	"1914MB"



	bootloader_version

	string

	"0.9.0"



	firmware_version

	string

	"2.8.0"



	reset_reason

	string

	"Software Reset"



	last_boot_time

	DateTime

	


	ip_address

	string

	"192.168.1.3"



	subnet_mask

	string

	"255.255.255.0"



	broadcast_address

	string

	"192.168.1.255"



	default_gateway

	string

	"192.168.1.3"



	dns_servers

	table of strings

	“1.1.1.1”,”1.0.0.1”






For example:

capacity = system.channel_capacity

boot_time = system.last_boot_time.time_string









            

          

      

      

    

  

    
      
          
            
  




Temperature

A Temperature object is returned from get_temperature.


Properties









	Property

	Value Type

	Description

	Value Example





	sys_temp

	number

	Only for MSC X and Atlas/Atlas Pro

	40.2



	core1_temp

	number

	Only for MSC X and Atlas/Atlas Pro

	44



	core2_temp

	number

	Only for MSC X rev 1

	44.1



	ambient_temp

	number

	Only for MTPC, MSC X rev 1

	36.9



	cc_temp

	number

	Only for MSC X rev 2 and Atlas/Atlas Pro

	44.1



	gpu_temp

	number

	Only for Atlas/Atlas Pro

	38.2






For example:

temp = get_temperature()
log(temp.ambient_temp)









            

          

      

      

    

  

    
      
          
            
  




Time

Information about the controller’s clock is available in the time namespace. In trigger action scripts the time namespace is added directly to the environment; in IO modules it is in the controller namespace, i.e. controller.time.


Properties

The time namespace has the following properties:








	Property

	Value Type

	Value Example





	is_dst

	boolean

	true



	gmt_offset

	integer (minutes)

	
-300

300 Minutes (5 hours) behind











Functions

The time namespace has the following functions, which each return a DateTime object:


	get_current_time()


	get_sunrise()


	get_sunset()


	get_civil_dawn()


	get_civil_dusk()


	get_nautical_dawn()


	get_nautical_dusk()


	get_new_moon()


	get_first_quarter()


	get_full_moon()


	get_third_quarter()




For example:

current_hour = time.get_current_time().hour









            

          

      

      

    

  

    
      
          
            
  




Timeline

A Timeline object is returned from get_timeline.


Properties









	Property

	Value Type

	Description

	Value Example





	name

	string

	Timeline name

	"Timeline 1"



	group

	string

	Timeline group name (A through H or empty string)

	"A"



	length

	integer

	Timeline length, in milliseconds

	10000



	source_bus

	integer

	Integer value of constants: DEFAULT, TCODE_1 … TCODE_6, AUDIO_1 … AUDIO_4

	1



	timecode_format

	string

	Incoming timecode format on source bus

	"SMPTE30"



	audio_band

	integer

	0 is equivalent to the constant: VOLUME

	0



	audio_channel

	integer

	Integer value of constants: LEFT, RIGHT or COMBINED

	1



	audio_peak

	boolean

	The Peak setting of the timeline, if set to an audio time source

	false



	time_offset

	integer

	Milliseconds

	5000



	state

	integer

	Integer value of the state - see Timeline States below for definitions

	1



	onstage

	boolean

	Whether the timeline is affecting output of any fixtures

	true



	position

	integer

	Milliseconds

	5000



	priority

	integer

	Integer value of constants: HIGH_PRIORITY, ABOVE_NORMAL_PRIORITY, NORMAL_PRIORITY, BELOW_NORMAL_PRIORITY or LOW_PRIORITY

	0



	custom_properties

	table

	Table keys and values correspond to custom property names and values

	





For example:

tl = get_timeline(1)
name = tl.name
state = tl.state

if (tl.source_bus == TCODE_1) then
  -- do something
end






Timeline States

A timeline will be in one of the following states:


	Timeline.NONE


	The timeline has never been run (since the last reset of the controller).






	Timeline.RUNNING


	The timeline is running (although might not be actively controlling outputs - see the onstage property).






	Timeline.PAUSED


	The timeline has been paused by another action.






	Timeline.HOLDING_AT_END


	The timeline has reached the end, and is holding.






	Timeline.RELEASED


	The timeline has been run and has now been released.











Member functions

The following are member functions of Timeline objects.


start

start()

Starts the timeline. For example:

-- start timeline 1
get_timeline(1):start()







release

release([fade])

Releases the timeline. Optionally specify a fade time in seconds as a float, e.g. 2.0.

For example:

-- release timeline 3
get_timeline(3):release(1.0)







toggle

toggle([fade])

Toggles the playback of the timeline - if it’s running, release it; if it’s not running, start it. Optionally specify a release fade time in seconds as a float, e.g. 2.0.

For example:

-- toggle timeline 2, releasing in time 3 secs if it's running
get_timeline(2):release(3.0)







pause

pause()

Pauses the timeline.



resume

resume()

Resumes the timeline.



set_rate

set_rate(rate)

Sets the rate of playback of the timeline. Set the rate as a float or an integer with range, e.g. 0.1 or Variant(10, 100) would set the rate to 10% of normal speed.

For example:

-- set the rate of timeline 1 to 20% of normal speed
get_timeline(1):set_rate(0.2)
-- set the rate of timeline 2 to 30% of normal speed
get_timeline(2):set_rate(Variant(30,100))







set_position

set_position(position)

Jumps the position of playback of the timeline. Set the position as a float or an integer with range, e.g. 0.1 or Variant(10, 100) would set the position to 10% of the timeline length.

For example:

-- set the position of timeline 1 to 50% of timeline length
get_timeline(1):set_position(0.5)
-- set the position of timeline 2 to 20% of timeline length
get_timeline(2):set_position(Variant(2,10))







set_default_source

Set the time source for the timeline to the default.

For example:

get_timeline(1):set_default_source()







set_timecode_source

set_timecode_source(timecodeBus[, offset])

Set a timecode source for the timeline according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	timecodeBus

	integer

	Integer value of constants: TCODE_1 … TCODE_6

	TCODE_1



	offset

	integer

	Optional offset to apply to the timecode, in milliseconds

	1000








set_audio_source

set_audio_source(audioBus, band, channel[, peak])

Set a audio band as the time source for the timeline according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	audioBus

	integer

	Integer value of constants: AUDIO_1 … AUDIO_4

	AUDIO_1



	band

	integer

	The audio band to sample (number of bands depends on audio source configuration; 0 => volume)

	0



	channel

	integer

	Integer value of constants: LEFT, RIGHT or COMBINED

	LEFT



	peak

	boolean

	Optional. Whether to use the peak levels from the audio band as the time source input (default false)

	false











            

          

      

      

    

  

    
      
          
            
  




Universe

A Universe object is returned from e.g. get_dmx_universe.


Member functions

The following are member functions of Universe objects.


get_channel_value

get_channel_value(channel)

Gets the current level of a channel in the universe, where channel is the integer channel number (1-512).

For example:

uni = get_dmx_universe(1) -- get DMX Universe 1
level = uni:get_channel_value(1) -- get channel 1 from the returned universe







park

park(channel, value)

Parks an output channel at a given value according to the parameters:









	Parameter

	Value Type

	Description

	Value Example





	channel

	integer (1-512)

	Number of the output channel

	1



	value

	integer (0-255)

	Level to set the channel to

	128






For example:

-- Park channel 4 of DMX universe 1 at 128 (50%)
get_dmx_universe(1):park(4,128)







unpark

unpark(channel)

Clears the parked value on an output channel, where channel is the integer channel number (1-512).

For example:

 -- Unpark channel 4 of DMX universe 1
 -- (it will go back to normal output levels)
get_dmx_universe(1):unpark(4)










            

          

      

      

    

  

    
      
          
            
  




Variant


Introduction

Within Lua Scripting (as with other scripting languages) it is possible to store data within a named location (variable).

Lua typically doesn’t differentiate between the contents of a variable (unlike some programming languages) and the type (integer, string, boolean) of the variable can change at any time.

Mosaic has added an object to the scripting environment called a Variant, which can be used to contain the data with an assignment as to the type of data that is contained. This means that a single Variant can be utilised and handled differently depending on the data that is contained and how it is being used.



Definition


Properties

A Variant object has the following properties:







	Property

	Description





	integer

	Get or set an integer data type



	range

	Get or set the range of an integer data type



	real

	Get or set a real data type (number with decimal point)



	string

	Get or set a string data type



	ip_address

	Get or set an IP address data type








Member functions


Constructor

Variant()

Create new variant.



is_integer

Returns true or false to show whether the stored data has an integer representation.



is_string

Returns true or false to show whether the stored data has a string representation.



is_ip_address

Returns true or false to show whether the stored data has an IP address representation.





Usage

Variant(value, range)


Defining a variant

Within your Lua script you can create a Variant with the following syntax:

var = Variant() -- where var is the name of the variant.







Variant types


Integer

An integer variant can be used to store a whole number:

var = Variant() -- where var is the name of the variant

var.integer = 123 -- set var to an integer value of 123

log(var.integer) -- get the integer value stored in var

log(var.real) -- get the integer value stored in var and convert it to a float

log(var.string) -- get the integer value stored in var and convert it to a string





As shown in the example code, above, the integer property of a Variant can be used to either get or set the value of the Variant as an integer (whole number).

var:is_integer() -- returns a boolean if the variant contains an integer







Range

An integer can be stored with an optional range parameter:

var = Variant() -- where var is the name of the variant

var.integer = 123 -- set var to an integer value of 123

var.range = 255 -- set the range of var to be 255





This can be used to calculate fractions and/or to define that a Variant is a 0-1, 0-100 or 0-255 value.

The range of a Variant should be set if you intend to use the Variant to set an intensity or colour value.

Some captured variables have a range attribute, and this is indicated in the log like this:

Trigger 7 (Ethernet Input): Captured 3 variables
Captured variables
  1 - Integer: 100 of 255







Real

A real Variant can be used to store a floating point (decimal) number.

var = Variant() -- where var is the name of the variant.

var.real = 12.3 -- set var to an integer value of 12.3

log(var.real) -- get the integer value stored in var





As shown in the example code, above, the real property of a Variant can be used to either get or set the value of the Variant as a real number.



String

A string Variant can be used to store a string of ASCII characters.

var = Variant() -- where var is the name of the variant

var.string = "example" -- set var to a string value of "example"

log(var.string) -- get the string value stored in var





As shown in the example code, above, the string property of a Variant can be used to either get or set the value of the Variant as a string.

var:is_string() -- returns a boolean if the variant contains a string







IP address

var = Variant() -- where var is the name of the variant

var.ip_address = "192.168.1.23" -- set var to the IP Address 192.168.1.23 or -1062731497

log(var) -- get the stored data ("192.168.1.23")

log(var.ip_address) -- get the stored IP Address (-1062731497)

log(var.string) -- get the stored IP Address and convert it to a string ("192.168.1.23")

log(var.integer) -- get the stored IP Address and convert it to an integer (-1062731497)





As shown in the example code, above, the ip_address property of a Variant can be used to either get or set the value of the Variant as an IP Address.

As a setter, you can pass a dotted decimal string (e.g. “192.168.1.23” or the integer representation -1062731497).

var:is_ip_address() -- returns a boolean if the variant contains a IP Address








Shorthand

A Variant can also be defined using a shorthand:

var = Variant(128,255) -- create variable var as an integer (128) with range 0-255

var = Variant(128) -- create variable var as a real number (128.0)

var = Variant(12.3) -- create variable var as a real number (12.3)

var = Variant("text") -- create variable var as a string ("text")






Note

There isn’t a shorthand for IP Addresses.






Default variants

Some script functions return a Variant, including get_trigger_variable. For example:

get_trigger_variable(1).integer





The master_intensity_level properties of Group and Content Target are both Variants:

get_group(1).master_intensity_level.integer

get_group(1).master_intensity_level.range

get_content_target(1).master_intensity_level.integer

get_content_target(1).master_intensity_level.range









            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  










	Attribute

	Value Type

	Description





	username

	string

	The username of the user.



	password

	string

	The user’s password.








            

          

      

      

    

  

    
      
          
            
  



bps = get_bps(1)
btn = bps:get_state(1)







            

          

      

      

    

  

    
      
          
            
  



target = get_content_target(1)
current_level = target.master_intensity_level







            

          

      

      

    

  

    
      
          
            
  



target = get_content_target(1, PRIMARY)
current_angle = target.rotation_offset







            

          

      

      

    

  

    
      
          
            
  



cont = get_current_controller()
name = cont.name







            

          

      

      

    

  

    
      
          
            
  



-- Get override for fixture 22
override = get_fixture_override(22)
-- Set the override colour to red (and full intensity)
override:set_irgb(255, 255, 0, 0)







            

          

      

      

    

  

    
      
          
            
  



-- Get override for group 3
override = get_group_override(3)
-- Set the intensity to 50% in 2 seconds
override:set_intensity(128, 2.0)







            

          

      

      

    

  

    
      
          
            
  



grp = get_group(1)
name = grp.name







            

          

      

      

    

  

    
      
          
            
  



lat = get_location().lat







            

          

      

      

    

  

    
      
          
            
  



project_name = get_current_project().name







            

          

      

      

    

  

    
      
          
            
  



rep_name = get_current_replication().name







            

          

      

      

    

  

    
      
          
            
  



rio = get_rio(RIO44, 1)
input = rio:get_input(1)
output_state = rio:get_output(1)







            

          

      

      

    

  

    
      
          
            
  



scn = get_scene(1)
name = scn.name
state = scn.state







            

          

      

      

    

  

    
      
          
            
  



temp = get_temperature()
log(temp.ambient_temp)







            

          

      

      

    

  

    
      
          
            
  



tl = get_timeline(1)
name = tl.name
state = tl.state

if (tl.source_bus == TCODE_1) then
  -- do something
end







            

          

      

      

    

  

    
      
          
            
  



uni = get_dmx_universe(1) -- get DMX Universe 1
level = uni:get_channel_value(1) -- get channel 1 from the returned universe







            

          

      

      

    

  

    
      
          
            
  




Note


	You can provide:
	
	No arguments - this will release all with the default fade time.


	A fade time, which will be used to release all.


	Or, both a fade time and a group.


















	Parameter

	Value Type

	Description

	Value Example





	fade

	float

	Optional. Release fade time in seconds. If not provided, the default fade time will be used.

	2.0



	group

	string

	Optional. Group name: A through H. Prepend the group name with ! to apply the action to all groups except the specified group, e.g. !A.

	"B"








            

          

      

      

    

  

    
      
          
            
  











	Parameter

	Value Type

	Description

	Value Example





	angle

	float

	Optional. Angle of rotation to transition to, in degrees. Defaults to zero.

	90.0



	count

	integer

	Number of times to repeat the rotation transformation.

	1



	period

	integer

	The period of the rotation, in seconds - the time to perform one count of the transformation.

	2



	delay

	integer

	Time to wait before starting the rotation, in seconds.

	0








            

          

      

      

    

  

    
      
          
            
  











	Parameter

	Value Type

	Description

	Value Example





	x_offset

	float

	Optional. Offset to apply to the x position. Defaults to 0.

	25.0



	count

	integer

	Number of times to repeat the x translation.

	1



	period

	integer

	The period of the translation, in seconds - the time to perform one count of the transformation.

	2



	delay

	integer

	Time to wait before starting the translation, in seconds.

	0








            

          

      

      

    

  

    
      
          
            
  











	Parameter

	Value Type

	Description

	Value Example





	y_offset

	float

	Optional. Offset to apply to the y position. Defaults to 0.

	25.0



	count

	integer

	Number of times to repeat the y translation.

	1



	period

	integer

	The period of the translation, in seconds - the time to perform one count of the transformation.

	2



	delay

	integer

	Time to wait before starting the translation, in seconds.

	0








            

          

      

      

    

  

    
      
          
            
  



Functions in the JavaScript API that perform actions on the controller, e.g. start_timeline, have an optional callback argument. This expects a function, which is called when a response to the underlying HTTP API request is received. Its argument, if non-null, is the response body. If the content type of the response was "application/json" then the argument will be an object - the result of parsing the body as JSON.



            

          

      

      

    

  

    
      
          
            
  



Constants for EDN types are defined in query.js as follows:







	Name

	Value





	EDN20

	109



	EDN10

	110








            

          

      

      

    

  

    
      
          
            
  



Constants for protocols are defined in query.js as follows:







	Name

	Value





	DMX

	1



	PATHPORT

	2



	ARTNET

	4



	KINET

	8



	SACN

	16



	DVI

	32



	RIO_DMX

	64



	EDN

	128








            

          

      

      

    

  

    
      
          
            
  



Constants for RIO types are defined in query.js as follows:







	Name

	Value





	RIO80

	101



	RIO44

	102



	RIO08

	103








            

          

      

      

    

  

    
      
          
            
  



A universe key string for RDM takes the form:


	protocol:index for protocols dmx and art-net;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.




Where:


	remoteDeviceType can be edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"edn:edn20:1:5"






            

          

      

      

    

  

    
      
          
            
  



A universe key string takes the form:


	protocol:index for protocols dmx, pathport, sacn, art-net;


	protocol:kinetPowerSupplyNum:kinetPort for protocol kinet;


	protocol:remoteDeviceType:remoteDeviceNum for protocol rio-dmx;


	protocol:remoteDeviceType:remoteDeviceNum:port for protocols edn, edn-spi.




Where:


	kinetPowerSupplyNum is an integer;


	kinetPort is an integer;


	remoteDeviceType can be rio08, rio44 or rio80, edn10 or edn20;


	remoteDeviceNum is an integer;


	port is an integer.




For example:


	"dmx:1"


	"rio-dmx:rio44:1"






            

          

      

      

    

  _static/pharos-logo-light.png
Go)pharos)





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Designer API
        


      


    
  

_static/mosaic-logo-dark.png
=Y
L U OSAIC





_static/mosaic-logo-light.png
=Y
L U OSAIC





_static/file.png





_static/minus.png





_static/pharos-logo-dark.png





