
Controller API
Release 8.0

Carallon Ltd

Apr 19, 2024

CONTENTS

1 Introduction 3

2 Web API Authentication 5
2.1 Authentication Methods . 5

3 What’s New 7
3.1 v8.0 . 7
3.2 v7.0 . 7
3.3 v6.0 . 7
3.4 v5.0 . 8

4 HTTP API 9
4.1 Authentication . 9
4.2 API Versions . 10
4.3 Querying and Controlling . 11

5 JavaScript Query Library 55
5.1 Including the Library . 55
5.2 Event Handlers . 55
5.3 Querying and Controlling . 56
5.4 Subscriptions . 77

6 Lua API 89
6.1 Adjustment Target . 89
6.2 BPS . 91
6.3 Content Target . 92
6.4 Controller . 93
6.5 DateTime . 94
6.6 Group . 94
6.7 InputThreshold . 95
6.8 Location . 96
6.9 Override . 96
6.10 Project . 99
6.11 Network 2 . 100
6.12 Replication . 100
6.13 RIO . 101
6.14 Scene . 102
6.15 System . 104
6.16 Temperature . 104
6.17 Time . 105
6.18 Timeline . 106

i

6.19 Universe . 109
6.20 Variant . 111
6.21 WebServer . 114
6.22 Standard Libraries . 115
6.23 Functions . 116

ii

Controller API, Release 8.0

Welcome to the API documentation for Mosaic Designer controllers.

If you’re new here then you might start with the introduction, otherwise you might want to read about what’s new.

CONTENTS 1

Controller API, Release 8.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Mosaic Designer controllers offer HTTP and Lua APIs providing access to system information, playback functions and
trigger operations.

In addition, a small JavaScript library is hosted on the controller’s web server, which wraps the HTTP requests of the
web API and also provides a mechanism to subscribe to the controller’s websocket channels via callbacks.

3

Controller API, Release 8.0

4 Chapter 1. Introduction

CHAPTER

TWO

WEB API AUTHENTICATION

If the controller has security setup then some endpoints of the HTTP API and some functions in the JavaScript library
will require clients to authenticate in order to authorise the requests.

2.1 Authentication Methods

Two methods for authenticating users of the Web API are supported:

• Cookie Authentication: the default when using the API and/or query.js library in a custom web interface.

• Token Authentication: used with HTTP API requests, typically when the client is not a web browser.

With both methods, a new token, valid for 5 minutes, is returned from each authenticated request. If the user, or API
client, is inactive for longer than 5 minutes then the cookie or token expires, requiring a username and password to be
provided again.

2.1.1 Cookie Authentication

Cookie authentication is typically used by the controller’s web interface (either the default web interface or a custom
web interface in a project).

Cookie authentication works with both the HTTP API and the query.js library.

A cookie is returned by the controller in response to a POST request to the /authenticate endpoint when the
original_url is provided as a cookie or a query parameter. This is the endpoint used by the default login page
whenever a user signs in.

The cookie is stored by a web browser automatically, and the browser then sends this cookie with subsequent requests
to authenticate the user. The response from each authenticated request will update this cookie with a new token, valid
for 5 minutes. If no authenticated requests are made for 5 minutes then the token in the cookie will expire and the
/authenticate endpoint must be used to get a new token.

The cookie can be removed by making a GET request to the /logout endpoint, which can be done simply by navigating
the browser to that endpoint.

5

Controller API, Release 8.0

Custom Login Page

Normally, a user will sign into the controller using the login page of the default web interface, which is shown if a user
tries to visit a page that they don’t have access to. In a custom web interface, uploaded as part of a project, a custom
login page can be configured with the LoginFile directive in the .webconfig file of the custom web interface. This
custom login page is then shown instead of the default login page when a user tries to visit part of a custom web interface
that they don’t have access to.

Typically a login page will be an HTML page with a form element containing fields for the username and password.
The HTML snippet below can be used to generate a form with these fields:

<form action="/authenticate" method="POST">
<input type="text" name="user">
<input type="password" name="password">
<button type="submit">Submit</button>

</form>

The form’s action is set to POST the form to the controller’s /authenticate endpoint. The original_url cookie
will have been set by the webserver automatically, and will be sent by the browser as part of the POST request. If
authentication is successful, the response from the controller will contain a token cookie, which the browser will store
automatically.

2.1.2 Token Authentication

Token authentication is typically used by the HTTP API in cases where a web browser is not the client. The client
requests a Bearer Token with a POST request to the controller’s /authenticate endpoint, providing the username
and password, and this token is then used in future requests.

To use the token in a request, set the Authorization header value to Bearer {your token}, where {your token}
should be replaced with the value of token in the response.

The JSON object in the response from each authenticated request will include a token attribute, whose value will be
a new token, valid for 5 minutes. If no authenticated requests are made for 5 minutes then the token will expire and the
/authenticate endpoint must be used to get a new token.

6 Chapter 2. Web API Authentication

CHAPTER

THREE

WHAT’S NEW

3.1 v8.0

• Release scenes and timelines by group number as well as group name.

• Add ability to retrieve API version in use.

3.2 v7.0

• Add lua controller reset function.

• Add new I/O write mode, and document I/O functionality.

• Improve ability to query RIO devices for inputs and outputs.

• Add cryptographic hashing functions get_hash_string and get_hash_table.

• Add ability to retrieve the status of the controller WebServer from lua.

3.3 v6.0

• Breaking change to HTTP authentication, using new Authenticate endpoint.

• Add Factory Reset HTTP endpoint.

• Remove password from the HTTP config response.

• Breaking change to setting colour overrides with new Override Colour object in HTTP and JavaScript.

• New snapshot functionality when setting colour overrides in HTTP and JavaScript.

• Add RDM Discovery HTTP endpoint and RDM Discovery JavaScript function.

• Add RDM Get HTTP endpoint and RDM Get JavaScript function.

• Add RDM Set HTTP endpoint and RDM Set JavaScript function.

• Add EDN protocols to Lua disable_output.

7

Controller API, Release 8.0

3.4 v5.0

• Added controller propagation to certain HTTP API requests and query.js functions.

• memory_free changed to memory_available in the HTTP & JavaScript System information and in the Lua
System namespace.

• get_trigger_number function added.

• vlan_tag property added to Lua Controller.

• is_network_primary property added to Lua Controller.

• dns_servers property added to the Lua System namespace.

8 Chapter 3. What’s New

CHAPTER

FOUR

HTTP API

Mosaic controllers provide an HTTP API to query and control the current project and the controller itself.

4.1 Authentication

Mosaic controllers have user accounts, each of which can belong to different security groups, which in turn control
access to parts of the HTTP API. The HTTP API has a series of endpoints to allow clients to authenticate users with
the controller.

4.1.1 Authentication

Authentication reference for the controller HTTP API.

Authenticate

Methods

POST

Accepts form data or JSON to authenticate a user’s credentials.

POST /authenticate

The payload, whether form data or JSON, should have the following attributes:

Attribute Value Type Description
username string The username of the user.
password string The user’s password.

If the credentials are valid, a JSON web token (JWT) is returned. This token is returned either as a token cookie or in
a JSON object with a token attribute, depending on whether the original_url parameter was sent with the request.

To use a token returned in a JSON object to authorise a request, set the Authorization header value to Bearer {your
token}, where {your token} should be replaced with the value of token in the response from /authenticate.

9

Controller API, Release 8.0

If the user cannot be authenticated because the username or password are incorrect then a redirect response will be
returned, pointing to the value of the Referer header in the request.

The response will be a 400 error if either attribute is missing or a value is of an invalid type.

original_url

The original_url parameter is typically used when authenticating the user from form data sent from a web page. Its
value is set to the path of the page from where the user was redirected to the login page, and its where the response from /
authenticatewill redirect the browser upon successful authentication. It can be sent as a cookie or a query parameter
with the /authenticate request. Its presence in the request will result in the response from /authenticate setting
a cookie with the JWT, rather than returning a JSON object containing the JWT.

For example, if an unauthenticated or unauthorised user attempts to access the configuration page of the built-in web
interface, they would try to navigate to /default/config.lsp but the controller’s web server would redirect them to
default/login.lsp and set the original_url cookie to /default/config.lsp.

In a custom web interface using .webconfig files to configure access control, the original_url cookie is automat-
ically set by the web server when redirecting to the login page (which may be a custom login page) when the user
attempts to access a restricted page for which they are not authorised.

In both cases, when the login page submits a request to /authenticate, the original_url cookie will be sent
automatically by the browser. A successful response will redirect to the value of original_url and store a token
cookie in the browser with the user’s JWT.

Logout

Methods

GET

Ends the user’s current session.

GET /logout

The request must be authenticated either with a cookie or by sending a valid Bearer token in the Authorization
header.

If the request is made from a web browser using cookie authentication then the cookie will be deleted from the browser
by the response. The web browser will reload the page from which the request was made if the Referer header is set.

4.2 API Versions

This API is available in several versions.

You can retrieve the API version in use by querying the api_version endpoint as described below.

The current API version is set as a property of the project.

Note: The ability to query the API version is available only in Designer version 2.12 and above.

10 Chapter 4. HTTP API

Controller API, Release 8.0

4.2.1 GET

Returns the API version in use from the controller.

GET /api/api_version

Returns a JSON object with a single attribute, version, which is the integer version in use:

{
"version": 8

}

4.3 Querying and Controlling

The endpoints provided in the HTTP API for querying and controlling the controller and its current project are detailed
in the following sections:

4.3.1 Beacon

Methods

POST

Toggle beacon mode on the controller.

POST /api/beacon

In beacon mode, a controller will flash its LEDs or it screen continuously.

4.3.2 Channel / Park

Methods

POST

Park an output channel or channels at a specified level.

POST /api/channel

Payload is a JSON object with the following attributes:

Attribute Value
Type

Description Value Example

universe string See Universe Key String Format "dmx:1"
channels string Comma separated list of channel numbers. "1-3,5"
level integer Level to set the channel(s) to: 0-255. 128

4.3. Querying and Controlling 11

Controller API, Release 8.0

DELETE

Unpark an output channel or channels.

DELETE /api/channel

Payload is a JSON object with the following attributes:

Attribute Value
Type

Description Value Example

universe string See Universe Key String Format "dmx:1"
channels string Comma separated list of channel numbers. "1-3,5"

Universe Key String Format

A universe key string takes the form:

• protocol:index for protocols dmx, pathport, sacn, art-net;

• protocol:kinetPowerSupplyNum:kinetPort for protocol kinet;

• protocol:remoteDeviceType:remoteDeviceNum for protocol rio-dmx;

• protocol:remoteDeviceType:remoteDeviceNum:port for protocols edn, edn-spi.

Where:

• kinetPowerSupplyNum is an integer;

• kinetPort is an integer;

• remoteDeviceType can be rio08, rio44 or rio80, edn10 or edn20;

• remoteDeviceNum is an integer;

• port is an integer.

For example:

• "dmx:1"

• "rio-dmx:rio44:1"

4.3.3 Cloud

Methods

GET

Returns the state of connectivity to the cloud remote management system.

GET /api/cloud

Returns a JSON object with the following attributes:

12 Chapter 4. HTTP API

Controller API, Release 8.0

Attribute Value Type Description
connected boolean Whether or not the system is currently connected to the cloud
connecting boolean Whether or not the system is currently in the process of connecting to

the cloud

POST

Allows configuration of the parameters for connection to the cloud.

POST /api/cloud

Payload is a JSON object with the following attributes:

Attribute Value Type Description
action string Either set_device_key or clear_device_key
cloud_device_key string Only required for set_device_key - the string to set as the key.

4.3.4 Command

Methods

POST

Run a Lua script or pass a command to the command line parser on the controller.

Note: The Command Line Parser must be enabled in the web interface settings of the current project, else this endpoint
will not be available.

POST /api/cmdline

Payload is a JSON object with the following attributes:

Attribute Value Type Description
input string The script to parse or run.

For example:

{
"input": "tl = 1 get_timeline(tl):start()"

}

4.3. Querying and Controlling 13

Controller API, Release 8.0

Response

If the Command Line Parser is enabled in the web interface settings of the current project then a 200 status code will be
returned, along with the text Executed if the script was executed successfully. If an error occurred when attempting
to run the script then the error string will be returned.

The response will be 501 Not Implemented if the Command Line Parser is not enabled, or 400 Bad Request if
no project is loaded.

4.3.5 Config

Methods

POST

Edits the configuration of the controller.

POST /api/config

Payload is a JSON object with the following attributes:

14 Chapter 4. HTTP API

Controller API, Release 8.0

Attribute Value
Type

Description Value Example

ip string Optional. Set the controller’s IP address (manage-
ment interface)

"192.168.1.3"

subnet_mask string Optional. Set the controller’s subnet mask (man-
agement interface)

"255.255.255.0"

gateway string Optional. Set the controller’s gateway address
(management interface)

"192.168.1.1"

dhcp_enabled boolean Optional. Set whether the controller is assigned its
IP address automatically by DHCP

true

name_server_1 string Optional. Set the primary name server address "192.168.1.1"
name_server_2 string Optional. Set the secondary name server address "8.8.8.8"
http_port integer Optional. Set the port opened for HTTP access to

the controller’s web server
80

https_port integer Optional. Set the port opened for HTTPS access to
the controller’s web server

443

year integer Optional. Set the year of the current date on the
controller’s clock

2021

month integer Optional. Set the month of the current date on the
controller’s clock (1-12)

4

day integer Optional. Set the day of the current date on the
controller’s clock (1-31)

25

hour integer Optional. Set the hour component of the current
time on the controller’s clock (0-23)

13

minute integer Optional. Set the minute component of the current
time on the controller’s clock (0-59)

21

second integer Optional. Set the second component of the current
time on the controller’s clock (0-59)

46

watchdog_enabled boolean Optional. Set whether the controller’s hardware
watchdog is enabled

true

log_level integer Optional. Set the level of verbosity of the con-
troller’s log (1-5)

3

syslog_enabled boolean Optional. Set whether the controller will send its
log to a syslog server

false

syslog_ip string Optional. Set the IP address of a third party syslog
server

"192.168.1.2"

ntp_enabled boolean Optional. Set whether the controller will fetch the
current time automatically from an NTP server

true

ntp_ip string Optional. Set the IP address of a third party NTP
server

"192.168.1.1"

If the response status code is 200 (OK), the response body will be a JSON object with a restart attribute. The value
of restart is boolean. If true, the controller will reset itself imminently in order to apply the changes.

4.3. Querying and Controlling 15

Controller API, Release 8.0

GET

Returns information about the queried controller’s configuration.

GET /api/config

Returns a JSON object with the following attributes:

Attribute Value
Type

Description Value Example

ip string Controller IP address (management interface) "192.168.1.3"
subnet_mask string Controller subnet mask (management interface) "255.255.255.0"
gateway string Gateway address (management interface) "192.168.1.1"
dhcp_enabled boolean Whether the controller is assigned its IP address au-

tomatically by DHCP
true

name_server_1 string Primary name server address "192.168.1.1"
name_server_2 string Secondary name server address "8.8.8.8"
http_port integer Port opened for HTTP access to the controller’s

web server
80

https_port integer Port opened for HTTPS access to the controller’s
web server

443

year integer Year of the current date, according to the con-
troller’s clock

2021

month integer Month of the current date, according to the con-
troller’s clock (1-12)

4

day integer Day of the current date, according to the con-
troller’s clock (1-31)

25

hour integer Hour component of the current time, according to
the controller’s clock (0-23)

13

minute integer Minute component of the current time, according
to the controller’s clock (0-59)

21

second integer Second component of the current time, according
to the controller’s clock (0-59)

46

watchdog_enabled boolean Whether the controller’s hardware watchdog is en-
abled

true

log_level integer Level of verbosity of the controller’s log (1-5) 3
syslog_enabled boolean Whether the controller is sending its log to a syslog

server
false

syslog_ip string IP address of a third party syslog server "192.168.1.2"
ntp_enabled boolean Whether the controller is fetching current time au-

tomatically from an NTP server
true

ntp_ip string IP address of a third party NTP server "192.168.1.1"

16 Chapter 4. HTTP API

Controller API, Release 8.0

4.3.6 Content Targets

Note: Atlas/Atlas Pro only

Methods

POST

Control a content target; currently the only supported action is to master the intensity of a content target (applied as a
multiplier to output levels).

POST /api/content_target

Payload is a JSON object with the following attributes:

Attribute Value Type Description Value Example
action string The action to perform on the content target. Cur-

rently only master_intensity is supported.
"master_intensity"

type string Optional. Type of content target (only relevant
on Atlas Pro): primary, secondary, target_3,
target_4, target_5, target_6, target_7,
target_8. Defaults to primary.

"secondary"

level float or string con-
taining a bounded
integer

Master intensity level to set on the content target 0.5 or "50:100"

fade float Optional. Fade time to apply the intensity change,
in seconds.

2.0

delay float Optional. Time to wait before applying the inten-
sity change, in seconds.

2.0

GET

Returns information about the current state of all Content Targets in the project.

GET /api/content_target

Returns a JSON object with a single content_targets attribute, which has an array value. Each item in the array is
a Content Target object with the following attributes:

Attribute Value Type Description Value Example
name string Content target name "Primary"
level integer Current intensity master level of the content target, 0-

100
100

4.3. Querying and Controlling 17

Controller API, Release 8.0

4.3.7 Controller

Methods

GET

Returns data about the controllers in the project.

GET /api/controller

Returns a JSON object with a single controllers attribute, which has an array value. Each item in the array is a
Controller object with the following attributes:

Attribute Value
Type

Description Value Example

num integer Controller number 1
type string Controller type, e.g. “MSC” or “MTPC” “MSC”
name string Controller user name, or the default name if none

is set
"Controller 1"

serial string Serial number of the controller "009060"
ip_address string IP address of the controller if the controller is dis-

covered; empty if the controller is not discovered
or is the queried controller

"192.168.1.3" or ""

online boolean Whether the controller is detected as online on the
local network

true

is_network_primary boolean Whether the controller is set as the network pri-
mary in the project

true

4.3.8 DALI

If the project uses DALI, the DALI API call can be used to get the status of connected DALI ballasts, and to allow
external systems to mark DALI issues as fixed.

Methods

GET

Returns information about connected DALI devices on a particular interface - see DALI Interface to retrieve a list of
interfaces.

GET /api/dali?interface=interface_num

interface_num is an integer referring to a specific interface.

Returns a JSON object with the following attributes:

18 Chapter 4. HTTP API

Controller API, Release 8.0

Attribute Value Type Description
online boolean Whether or not the interface is currently online
schedule object A DALI Schedule object
power object A DALI Power object
errors array of objects An array of DALI Error objects
ballast_status array of objects An array of DALI Ballast Status objects

POST

Allows marking of a DALI error as fixed, or refresh of the DALI data.

POST /api/dali

Payload is a JSON object with the following attributes:

Attribute Value Type Description
interface integer The interface on which to perform the reset.
address integer The DALI short address on which to perform the reset.
action string Either mark_fixed or refresh.

4.3.9 DALI Interface

The DALI Interface API allows retrieval of a list of DALI interfaces in the system.

Methods

GET

Returns an array of DALI interfaces

GET /api/dali_interfaces

Returns an array of JSON objects with the following attributes:

Attribute Value Type Description
id integer The ID of the interface
name string The assigned string name of the interface

4.3. Querying and Controlling 19

Controller API, Release 8.0

4.3.10 Factory Reset

Reset the controller to its factory settings, including all network settings and user accounts.

HTTP

POST

POST /api/factory_reset

4.3.11 Group

Note: Not applicable to Atlas/Atlas Pro

Methods

POST

Control a group; currently the only supported action is to master the intensity of a group (applied as a multiplier to
output levels). Action will propagate to all controllers in a project.

POST /api/group

Payload is a JSON object with the following attributes:

Attribute Value Type Description Value Example
action string The action to perform on the group. Currently only

master_intensity is supported.
"master_intensity"

num integer Group number. Group 0 means the All Fixtures
group.

1

level float or string con-
taining a bounded
integer

Master level to set on the group 0.5 or "50:100"

fade float Optional. Fade time to apply the intensity change,
in seconds.

2.0

delay float Optional. Time to wait before applying the inten-
sity change, in seconds.

2.0

20 Chapter 4. HTTP API

Controller API, Release 8.0

GET

Returns data about the fixture groups in the project.

GET /api/group[?num=groupNumbers]

num can be used to filter which groups are returned and is expected to be either a single number or a string expressing
the required groups, e.g. "1,2,5-9".

Note: Group 0 will return data about the All Fixtures group.

Returns a JSON object with a single groups attribute, which has an array value. Each item in the array is a Group
object with the following attributes:

Attribute Value Type Description Value Example
num integer Group number (only included for user-created

groups)
1

name string Group name "Group 1"
level integer Group master level, 0-100 100

4.3.12 Input

Methods

GET

Returns the status of digital & analogue inputs on the queried controller.

GET /api/input

Returns a JSON object with the following attributes:

Attribute Value Type Description
gpio array Array of Input objects; returned when queried controller is MSC or

MTPC + TPC-RIO
dmxIn object DMX Input object; returned when DMX input is configured on the

queried controller

The Input object has the following properties:

Attribute Value Type Description Value Example
input integer Input number 1
type string Analog, Digital, or Contact Closure "Contact Closure"
value integer or boolean Value type depends on input type - Analog inputs

return an integer, 0-100; other types return a bool.
true

The DMX Input object has the following properties:

4.3. Querying and Controlling 21

Controller API, Release 8.0

Attribute Value
Type

Description Value Example

error string If DMX input is configured but no DMX is received "No DMX received"
dmxInFrame array Array of channel values [0,0,0,0,0,0,0,0,

0,255,255,255...
255,0,255]

dmxInSourceCount integer The number of sources - will be 1 except for sACN. 1
dmxInProtocol string dmx, art-net or sacn "dmx"

4.3.13 Log

Methods

GET

Returns the log from the controller.

GET /api/log

Returns a JSON object with the following attributes:

Attribute Value Type Description
log string The whole log from the controller

4.3.14 Lua Variable

Methods

GET

Returns the current value of specified Lua variables.

GET /api/lua?variables=luaVariables

luaVariables is expected to be a string or comma-separated list of strings, where each string is a Lua variable name.

Returns a JSON object with the Lua variables and their values as its key/value pairs - the Lua variable names are the
keys.

For example, in a project that creates variables called bob and alice, GET /api/lua?variables=bob,alice could
return a JSON object as follows:

{
"alice": 1234,
"bob": "a string variable"

}

22 Chapter 4. HTTP API

Controller API, Release 8.0

4.3.15 Output

Methods

POST

Enable/disable the output of a selected protocol from the controller. Action will propagate to all controllers in a project.

POST /api/output

Payload is a JSON object with the following attributes:

Attribute Value Type Description Value Example
protocol string Protocol to disable. Options: dmx, pathport,

sacn, art-net, kinet, rio-dmx, edn, edn-spi.
"parthport"

action string Whether to enable or disable output via the pro-
tocol.

"disable"

GET

Returns the lighting levels being output by the queried controller.

GET /api/output?universe=universeKey

universeKey is a string; see Universe Key String Format.

For example: * GET /api/output?universe=dmx:1 * GET /api/output?universe=rio-dmx:rio44:1

If the queried controller is an MSC 1, the universe is DMX 2, DMX Proxy has been enabled for a MTPC in the project
and the MTPC is offline then this request will return a JSON object with the following attributes:

Attribute Value Type Value Example
proxied_tpc_name string "Controller 2""

Otherwise a JSON object with the following attributes is returned:

Attribute Value Type Description Value Example
channels array Array of integer (0-255) channel levels [0,0,0,0,0,0,0,0,

0,255,255,255...
255,0,255]

disabled bool Whether the output has been disabled by a Trigger
Action

false

4.3. Querying and Controlling 23

Controller API, Release 8.0

Universe Key String Format

A universe key string takes the form:

• protocol:index for protocols dmx, pathport, sacn, art-net;

• protocol:kinetPowerSupplyNum:kinetPort for protocol kinet;

• protocol:remoteDeviceType:remoteDeviceNum for protocol rio-dmx;

• protocol:remoteDeviceType:remoteDeviceNum:port for protocols edn, edn-spi.

Where:

• kinetPowerSupplyNum is an integer;

• kinetPort is an integer;

• remoteDeviceType can be rio08, rio44 or rio80, edn10 or edn20;

• remoteDeviceNum is an integer;

• port is an integer.

For example:

• "dmx:1"

• "rio-dmx:rio44:1"

4.3.16 Override

Methods

PUT

Set the Intensity, Red, Green, Blue levels for a fixture or group. Action will propagate to all controllers in a project.

PUT /api/override

Payload is a JSON object with the following attributes:

24 Chapter 4. HTTP API

Controller API, Release 8.0

Attribute Value Type Description Value Example
target string What the override should be applied to: group,

fixture, or (in Expert) space
"group"

num integer Optional. Group, fixture, or space number depending
on target. Group 0 means the All Fixtures group.

1

intensity integer or
string

Optional. Either an integer (0-255) representing the
intensity to set as part of override or the string
"snapshot" to capture the current intensity of the
fixture(s) and set this as the override value. Intensity
override will not be changed if this attribute isn’t pro-
vided.

128

colour Override
Colour or
string

Optional. Specifies the colour to set as part of the
override. Either an Override Colour or the string
"snapshot" to capture the current colour of the fix-
ture(s) and set this as the override.

temperature integer or
string

Optional. Either an integer (0-255) representing the
temperature component to set as part of override or
the string "snapshot" to capture the current tem-
perature component of the fixture(s) and set this as
the override value. Temperature override will not be
changed if this attribute isn’t provided.

128

fade float Optional. Fade time to apply the override change, in
seconds.

2.0

path string Optional. Crossfade path to use when apply-
ing the override: Default, Linear, Start, End,
Braked, Accelerated, Damped, Overshoot, Col
At Start, Col At End, Int At Start, Int At
End, Colour First, Intensity First

"Braked"

Override Colour

The value of the colour attribute in a PUT override request is a JSON object, specifying colour as either RGB or
Hue/Saturation values.

RGB

Colour as RGB for colour in an override PUT request:

4.3. Querying and Controlling 25

Controller API, Release 8.0

Attribute Value Type Description Value Exam-
ple

red integer or
string

Optional. Red component to set as part of override: 0-
255, or a percentage (0-100) followed by the % sign. Red
override will not be changed if this attribute isn’t pro-
vided.

255

green integer or
string

Optional. Green component to set as part of override:
0-255, or a percentage (0-100) followed by the % sign.
Green override will not be changed if this attribute isn’t
provided.

255

blue integer or
string

Optional. Blue component to set as part of override: 0-
255, or a percentage (0-100) followed by the % sign.
Blue override will not be changed if this attribute isn’t
provided.

255

Hue/Saturation

Colour as hue/saturation for colour in an override PUT request:

Attribute Value Type Description Value Example
hue integer Hue component to set as part of override: 0-255. 0
saturation integer Saturation component to set as part of override: 0-

255.
255

Note: Both hue and saturation are required for the request to be valid.

Example Overrides

Override group 1 to full intensity, using 0-255 values, and set colour to yellow:

{
"target": "group",
"num": "1",
"intensity": 255,
"colour": {

"red": 255,
"green": 255,
"blue": 0

}
}

Override fixture 1 to 50% intensity and green, using percentages:

{
"target": "fixture",
"num": 1,

(continues on next page)

26 Chapter 4. HTTP API

Controller API, Release 8.0

(continued from previous page)

"intensity": "50%",
"colour": {

"red": "0%",
"green": "100%",
"blue": "0%"

}
}

Override fixture 2 to 80% intensity and blue, using hue and saturation:

{
"target": "fixture",
"num": 2,
"intensity": "50%",
"colour": {

"hue": 200,
"saturation": 240

}
}

Override group 3 colour temperature of 44 with a fade time of 5 seconds:

{
"target": "group",
"num": 3,
"intensity": 255,
"temperature": 44,
"fade": 5.0

}

Snapshot the colour and intensity of all fixtures:

{
"target": "group",
"num": "0",
"intensity": "snapshot",
"colour": "snapshot"

}

DELETE

Release any overrides on fixtures or groups. Action will propagate to all controllers in a project.

DELETE /api/override

Payload is a JSON object with the following attributes:

4.3. Querying and Controlling 27

Controller API, Release 8.0

Attribute Value Type Description Value Example
target string What the overrides should be cleared on: group,

fixture.
"group"

num integer Optional. Group or fixture number, depending on
target. If not provided, target is ignored and all
overrides are cleared.

1

fade float Optional. Fade time in which to release overrides, in
seconds.

2.0

4.3.17 Project

Methods

GET

Returns data about the current project.

GET /api/project

Returns a JSON object with the following attributes:

Attribute Value Type Value Example
name string "Help Project"
author string "Contoso"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"
upload_date string "2017-01-30T15:19:08"

4.3.18 Project File

The controller allows you to upload or download the current project file, allowing the project in use to be switched out.

Methods

GET

Downloads the currently running project file.

GET /api/project/file

Returns the project file (as type application/vnd.pharos).

28 Chapter 4. HTTP API

Controller API, Release 8.0

POST

Uploads a project file, which will trigger the controller to switch to the new file.

Warning: The file to be uploaded must be exported from Designer for the project using the Export Project For
Upload button in Designer under the Network tab. You can not load a saved Designer project file directly.

POST /api/project/file

Uploads a project file to the controller. The body of the request should be the exported project file as binary data.

Note that the Content-Type header should be set to application/vnd.pharos; and the Content-Length header
should be set to the size of the project file.

4.3.19 Protocol

Methods

GET

Returns all the universes in the project on the queried controller.

GET /api/protocol

Returns a JSON object with a single outputs attribute, which has an array value. Each item in the array is a Protocol
object with the following attributes:

Attribute Value Type Description Value Example
type integer Protocol type; possible types are: DMX (1), Path-

port (2), Art-Net (4), KiNET (8), sACN (16), DVI
(32), RIO DMX (64), EDN DMX (128), EDN SPI
(256)

1

name string Protocol name "DMX"
disabled boolean Whether the output has been disabled by a Trigger

Action
false

universes array Array of Universe objects (see table below) [{"key":{"index":1},
"name":"1"},
{"key":{"index":2},
"name":"2"}]

dmx_proxy object DMX Proxy object, if applicable (see table below) {"ip_address":"192.
168.1.17",
"name":"Controller
1"}

Each Universe object has the following properties:

4.3. Querying and Controlling 29

Controller API, Release 8.0

Attribute Value Type Description Value Example
name string A simplistic version of the universe name, which

for most protocols is simply the index number
"1"

key object Universe Key object (see table below) {"index":1}

Each DMX Proxy object has the following properties:

Attribute Value Type Description Value Example
name string Name of the controller that is outputting this uni-

verse by proxy
"Controller 1"

ip_address string IP address of the controller that is outputting this
universe by proxy

"192.168.1.17"

The properties of the Universe Key object depend on the type.

For DMX, Pathport, sACN and Art-Net:

Attribute Value Type Value Example
index integer 1

For KiNET:

Attribute Value Type Value Example
kinet_port integer 1
kinet_power_supply_num integer 1

For RIO DMX:

Attribute Value
Type

Description Value Example

remote_device_num integer Remote device number (address) 1
remote_device_type integer Value can be 101 (RIO 80), 102 (RIO 44) or 103

(RIO 08)
101

For EDN:

Attribute Value
Type

Description Value Example

remote_device_num integer EDN number (address) 1
remote_device_type integer Value can be 109 (EDN 20) or 110 (EDN 10) 110
port integer Number of EDN output port 1

30 Chapter 4. HTTP API

Controller API, Release 8.0

4.3.20 RDM Discovery

Methods

POST

Request to start a full RDM discovery. A 202 response will be returned if the request has been successfully queued.
Results are available via a websocket subscription (see subscribe_rdm_discovery).

POST /api/rdm/discovery

Payload is a JSON object with a single universe attribute, which can either be a string in the Universe Key String
Format or an RDM Universe Key object.

For example, to start a full discovery on DMX universe 2, the request payload could be:

{
"universe": "dmx:2"

}

or, alternatively:

{
"universe": {
"protocol": 1,
"index": 2

}
}

To start RDM discovery on the first port of the EDN 20 with number 4 in the project, the request payload could be:

{
"universe": "edn:edn20:4:1"

}

or, alternatively:

{
"universe": {
"protocol": 128,
"remote_device_type": 109

}
}

PUT

Request to start an RDM discovery update, which is faster if a full RDM discovery has already been performed with a
POST request. A 202 response will be returned if the request has been successfully queued. Results are available via
a websocket subscription (see subscribe_rdm_discovery).

PUT /api/rdm/discovery

Payload is a JSON object with a single universe attribute, which can either be a string in the Universe Key String
Format or an object with the same attributes as for the POST request.

4.3. Querying and Controlling 31

Controller API, Release 8.0

GET

Returns the cached results of the last RDM discovery operation.

GET /api/rdm/discovery?universe=universeId

universe specifies which output universe to fetch cached RDM discovery data for. Its value is a string in the Universe
Key String Format.

Returns a JSON object with a devices attribute, which has an array value. Each item in the array is an RDM Device
Info object.

Universe Key String Format

A universe key string for RDM takes the form:

• protocol:index for protocols dmx and art-net;

• protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.

Where:

• remoteDeviceType can be edn10 or edn20;

• remoteDeviceNum is an integer;

• port is an integer.

For example:

• "dmx:1"

• "edn:edn20:1:5"

4.3.21 RDM Get

Methods

POST

Request to start an RDM Get operation. A 202 response will be returned if the request has been successfully queued.
Results are available via a websocket subscription (see subscribe_rdm_get_set).

POST /api/rdm/get

Payload is a JSON object with the following attributes:

32 Chapter 4. HTTP API

Controller API, Release 8.0

Attribute Value Type Description Value Example
universe string in Universe

Key String Format
or RDM Universe
Key

The universe on which to perform
the RDM Get operation.

"dmx:2"

destination_uid string Format is
{manuId}:{deviceId}(:{subId})
where {manuId} is a padded un-
signed hexadecimal integer of
width 4, lowercase, e.g. 072c;
{deviceId} is a padded un-
signed hexadecimal integer
of width 8, lowercase, e.g.
0004fe02; {subId} is an op-
tional unsigned decimal integer.

"072c:0004fe02"

pid string RDM PID for the Get operation.
Can be one of the Supported RDM
PIDs or the raw PID value as a hex
string, e.g. "FF".

"DEVICE_INFO"

meta object Optional. Metadata for the PID,
i.e. query params (see Meta).

max_rx_length integer Optional. Expected length of the
response data. Only relevant if a
raw PID value has been provided
for pid. If not provided then the
controller must wait for a timeout
before handling a response to en-
sure all response data has been re-
ceived from the device.

Meta

STATUS_MESSAGES

For the STATUS_MESSAGES PID, the meta object should have the following parameters:

Attribute Value
Type

Description

status_type integer Type of status messages to retrieve. Set to STATUS_NONE (0x00)
to establish whether a device is present on the network without re-
trieving any status message data from the device.

4.3. Querying and Controlling 33

Controller API, Release 8.0

PARAMETER_DESCRIPTION

For the PARAMETER_DESCRIPTION PID, the meta object should have the following parameters:

Attribute Value
Type

Description

pid_requested integer The manufacturer-specific PID for which a description is requested.
Range 0x8000 to 0xFFDF.

DMX_PERSONALITY_DESCRIPTION

For the DMX_PERSONALITY_DESCRIPTION PID, the meta object should have the following parameters:

Attribute Value
Type

Description

personality_requested integer Index of the requested personality.

SLOT_DESCRIPTION

For the SLOT_DESCRIPTION PID, the meta object should have the following parameters:

Attribute Value Type
slot_number_requested integer

SENSOR_DEFINITION and SENSOR_VALUE

For the SENSOR_DEFINITION and SENSOR_VALUE PIDs, the meta object should have the following parameters:

Attribute Value Type
sensor_number_requested integer

Universe Key String Format

A universe key string for RDM takes the form:

• protocol:index for protocols dmx and art-net;

• protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.

Where:

• remoteDeviceType can be edn10 or edn20;

• remoteDeviceNum is an integer;

• port is an integer.

For example:

34 Chapter 4. HTTP API

Controller API, Release 8.0

• "dmx:1"

• "edn:edn20:1:5"

Supported RDM PIDs

The following PIDs are directly supported for RDM Get operations:

• COMMS_STATUS

• STATUS_MESSAGES

• SUPPORTED_PARAMETERS

• PARAMETER_DESCRIPTION

• DEVICE_INFO

• DEVICE_MODEL_DESCRIPTION

• MANUFACTURER_LABEL

• DEVICE_LABEL

• FACTORY_DEFAULTS

• SOFTWARE_VERSION_LABEL

• BOOT_SOFTWARE_VERSION_ID

• BOOT_SOFTWARE_VERSION_LABEL

• DMX_PERSONALITY

• DMX_PERSONALITY_DESCRIPTION

• DMX_START_ADDRESS

• SLOT_INFO

• SLOT_DESCRIPTION

• SENSOR_DEFINITION

• SENSOR_VALUE

• LAMP_HOURS

• LAMP_STATE

4.3.22 RDM Set

Methods

POST

Request to start an RDM Set operation. A 202 response will be returned if the request has been successfully queued.
Results are available via a websocket subscription (see subscribe_rdm_get_set).

POST /api/rdm/set

Payload is a JSON object with the following attributes:

4.3. Querying and Controlling 35

Controller API, Release 8.0

Attribute Value Type Description Value Example
universe string in Universe

Key String Format
or RDM Universe
Key

The universe on which to perform
the RDM Set operation.

"dmx:2"

destination_uid string Format is
{manuId}:{deviceId}(:{subId})
where {manuId} is a padded un-
signed hexadecimal integer of
width 4, lowercase, e.g. 072c;
{deviceId} is a padded un-
signed hexadecimal integer
of width 8, lowercase, e.g.
0004fe02; {subId} is an op-
tional unsigned decimal integer.

"072c:0004fe02"

pid string RDM PID for the Set operation.
Can be one of the Supported RDM
PIDs or the raw PID value as a hex
string, e.g. "FF".

"DEVICE_INFO"

meta object Optional. Metadata for the PID,
i.e. query params (see Meta).

max_rx_length integer Optional. Expected length of the
response data. Only relevant if a
raw PID value has been provided
for pid. If not provided then the
controller must wait for a timeout
before handling a response to en-
sure all response data has been re-
ceived from the device.

Meta

DEVICE_LABEL

For the DEVICE_LABEL PID, the meta object should have the following parameters:

Attribute Value Type Description
label string Ascii text label for the device. Up to 32 characters.

36 Chapter 4. HTTP API

Controller API, Release 8.0

IDENTIFY_DEVICE

For the IDENTIFY_DEVICE PID, the meta object should have the following parameters:

Attribute Value Type Description
enable boolean Whether to enable/disable IDENTIFY_DEVICE mode over RDM.

DMX_START_ADDRESS

For the DMX_START_ADDRESS PID, the meta object should have the following parameters:

Attribute Value Type Description
start_address integer DMX start address to set on the device.

DMX_PERSONALITY

For the DMX_PERSONALITY PID, the meta object should have the following parameters:

Attribute Value Type Description
personality integer Index of the personality to set as current.

SENSOR_VALUE

For the SENSOR_VALUE PID, the meta object should have the following parameters:

Attribute Value Type Description
sensor_number integer Sensor number to reset.

LAMP_HOURS

For the LAMP_HOURS PID, the meta object should have the following parameters:

Attribute Value Type Description
lamp_hours integer Starting value to set on the device’s lamp hours counter.

4.3. Querying and Controlling 37

Controller API, Release 8.0

LAMP_STATE

For the LAMP_STATE PID, the meta object should have the following parameters:

Attribute Value Type Description
lamp_state integer Operating state to set the lamp to.

Raw

Where a raw PID value has been provided for pid, the meta object should have a single raw attribute with a string
value. This value will be the base64-encoded string containing parameters for the Set command.

Universe Key String Format

A universe key string for RDM takes the form:

• protocol:index for protocols dmx and art-net;

• protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.

Where:

• remoteDeviceType can be edn10 or edn20;

• remoteDeviceNum is an integer;

• port is an integer.

For example:

• "dmx:1"

• "edn:edn20:1:5"

Supported RDM PIDs

The following PIDs are directly supported for RDM Set operations:

• COMMS_STATUS

• DEVICE_LABEL

• FACTORY_DEFAULTS

• IDENTIFY_DEVICE

• DMX_START_ADDRESS

• DMX_PERSONALITY

• SENSOR_VALUE

• LAMP_HOURS

• LAMP_STATE

38 Chapter 4. HTTP API

Controller API, Release 8.0

4.3.23 Remote Device

Methods

GET

Returns data about all the remote devices in the project.

GET /api/remote_device

Returns a JSON object with a single remote_devices attribute, which has an array value. Each item in the array is a
Remote Device object with the following attributes:

Attribute Value Type Description Value Example
num integer Remote device number (address) 1
type string RIO 08, RIO 44, RIO 80, BPS, BPI, RIO A, or RIO

D
"RIO 44"

serial array Array of serial numbers (as strings) of all discovered
devices matching the address and type

["001234","005678"]

outputs array Array of Output objects (see table below); only re-
turned for RIO 44 and RIO 08 on the queried con-
troller

[{"output":1,
"value":true},
{"output":2,
"value":true},
{"output":3,
"value":true},
{"output":4,
"value":true}]

inputs array Array of Input objects (see table below); only returned
for RIO 44 and RIO 80 on the queried controller

[{"input":1,
"type":"Contact
Closure",
"value":true},
{"input":2,
"type":"Contact
Closure",
"value":true},
{"input":3,
"type":"Contact
Closure",
"value":true},
{"input":4,
"type":"Contact
Closure",
"value":true}]

online boolean Whether the remote device is detected as being online
on the local network

true

The Output JSON object has the following attributes:

Attribute Value Type Description Value Example
output integer Number of the output, as labelled on the remote de-

vice
1

state boolean true means the output is on, false means it is off true

4.3. Querying and Controlling 39

Controller API, Release 8.0

The Input JSON object has the following attributes:

Attribute Value Type Description Value Example
input integer Number of the input, as labelled on the remote device 1
type string Analog, Digital, or Contact Closure ""Digital"
value integer or boolean Value type depends on input type - Analog inputs re-

turn an integer, 0-255; other types return a bool.
true

4.3.24 Replication

Methods

GET

Returns data about the install replication.

GET /api/replication

Returns a JSON object with the following attributes:

Attribute Value Type Value Example
name string "Help Project"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

4.3.25 Hardware Reset

Methods

POST

Reboot the controller.

POST /api/reset

4.3.26 Scene

Methods

POST

Control a scene in the project.

Action will propagate to all controllers in a project.

POST /api/scene

40 Chapter 4. HTTP API

Controller API, Release 8.0

Payload is a JSON object with the following attributes:

Attribute Value Type Description Value Example
action string The action to perform on the scene(s): start,

release, toggle
"start"

num integer The number of the scene to perform the action on. If
not present, the action will be applied to all scenes
in the project; omitting this attribute is valid for
release.

1

fade number Optional. The fade time to apply to a release ac-
tion, in seconds, or the scene release that results from
a toggle action. If not provided, the default release
fade time will be used.

2.0

group string or inte-
ger

Optional. Scene group name or number. If name,
prepend the name with ! to apply the action to all
groups except the specified group. This attribute is
valid for a release action without a specified num,
meaning release all scenes.

"Group 1", "!Group
2" or 3

For example, to start a scene 2, the request payload is:

{
"action": "start",
"num": 2

}

To release scene 2 in 3.5 seconds, the request payload would be:

{
"action": "release",
"num": 2,
"fade": 3.5

}

To toggle scene 2, and release it in 2 seconds if it’s already been started, the request payload would be:

{
"action": "toggle",
"num": 2,
"fade": 2.0

}

To release all scenes in 2 seconds, the request payload would be:

{
"action": "release",
"fade": 2.0

}

To release all scenes except those in group B in 2 seconds, the request payload would be:

{
"action": "release",

(continues on next page)

4.3. Querying and Controlling 41

Controller API, Release 8.0

(continued from previous page)

"group": "!B",
"fade": 2.0

}

GET

Returns data about the scenes in the project and their state on the controller.

GET /api/scene[?num=sceneNumbers]

num can be used to filter which scenes are returned and is expected to be either a single number or a string expressing
the required scenes, e.g. "1,2,5-9".

Returns a JSON object with a single scenes attribute, which has an array value. Each item in the array is a Scene
object with the following attributes:

Attribute Value Type Description Value Example
num integer Scene number 1
name string Scene name "Scene 1"
state string none, started "none"
onstage boolean Whether the scene is affecting output of any fixtures true

4.3.27 System

Methods

GET

Returns data about the controller.

GET /api/system

Returns a JSON object with the following attributes:

42 Chapter 4. HTTP API

Controller API, Release 8.0

Attribute Value Type Value Example
hardware_type string “MSC”
channel_capacity integer 512
serial_number string "006321"
memory_total string "12790Kb"
memory_used string "24056Kb"
memory_available string "103884Kb"
storage_size string "1914MB"
bootloader_version string "0.9.0"
firmware_version string "2.8.0"
reset_reason string "Software Reset"
last_boot_time string "01 Jan 2017 09:09:38"
ip_address string "192.168.1.3"
subnet_mask string "255.255.255.0"
broadcast_address string "192.168.1.255"
default_gateway string "192.168.1.3"

4.3.28 Temperature

Methods

GET

Returns data about the controller’s temperature.

GET /api/temperature

Returns a JSON object with the following attributes:

Attribute Value Type Description Value Example
sys_temp number Only for MSC X and Atlas/Atlas Pro 40.2
core1_temp number Only for MSC X and Atlas/Atlas Pro 44
core2_temp number Only for MSC X rev 1 44.1
ambient_temp number Only for MTPC, MSC X rev 1 36.9
cc_temp number Only for MSC X rev 2 and Atlas/Atlas Pro 44.1
gpu_temp number Only for Atlas/Atlas Pro 38.2

4.3.29 Text Slots

Methods

PUT

Set the value of a text slot used in the project, which will propagate to all controllers in a project.

PUT /api/text_slot

4.3. Querying and Controlling 43

Controller API, Release 8.0

Payload is a JSON object with the following attributes:

Attribute Value Type Description Value Example
name string Text slot name "myTextSlot"
value string New value for the text slot. "Hello World!"

GET

Returns data about the text slots in the project and their current values.

GET /api/text_slot[?names=slotNames]

slotNames can be used to filter which test slots are returned and is expected to be either a single string or an array of
strings.

Returns a JSON object with a single text_slots attribute, which has an array value. Each item in the array is a Text
Slot object with the following attributes:

Attribute Value Type Value Example
name string "text"
value string "example"

4.3.30 Time

Methods

GET

Returns data about the time stored in the controller.

GET /api/time

Returns a JSON object with the following attributes:

Attribute Value Type Description Value Example
datetime string Controller’s local time as a string "01 Feb 2017

13:44:42"
local_time integer Controller’s local time in milliseconds 1485956682
uptime integer Milliseconds since last boot 493347

44 Chapter 4. HTTP API

Controller API, Release 8.0

4.3.31 Timeline

Methods

POST

Control a timeline in the project. Action will propagate to all controllers in a project.

POST /api/timeline

Payload is a JSON object with the following attributes:

Attribute Value Type Description Value Example
action string The action to perform on the timeline(s): start,

release, toggle, pause, resume, set_rate,
set_position

"start"

num integer The number of the timeline to perform the action on.
If not present, the action will be applied to all time-
lines in the project; omitting this attribute is valid for
release, pause and resume.

1

fade number Optional. The fade time to apply to a release action,
in seconds, or the timeline release that results from a
toggle action. If not provided, the default release
fade time will be used.

2.0

group string or inte-
ger

Optional. Timeline group name or number. If name,
prepend the name with ! to apply the action to all
groups except the specified group. This attribute is
valid for a release action without a specified num,
meaning release all timelines.

"Group 1", "!Group
2" or 3

rate string Required for a set_rate action; invalid otherwise.
Value should be a string containing a floating point
number or a bounded integer, where 1.0 means the
timeline’s default rate.

"0.1" or "10:100"

position string Required for a set_position action; invalid other-
wise. Value should be a string containing a float-
ing point number or a bounded integer, representing a
fraction of the timeline length.

"0.1" or "10:100"

For example, to start a timeline 2, the request payload is:

{
"action": "start",
"num": 2

}

To release timeline 2 in 3.5 seconds, the request payload would be:

{
"action": "release",
"num": 2,
"fade": 3.5

}

4.3. Querying and Controlling 45

Controller API, Release 8.0

To toggle timeline 2, and release it in 2 seconds if it’s running, the request payload would be:

{
"action": "toggle",
"num": 2,
"fade": 2.0

}

To pause timeline 4, the request payload is:

{
"action": "pause",
"num": 4

}

To resume timeline 4, the request payload is:

{
"action": "resume",
"num": 4

}

To pause all timelines, the request payload is:

{
"action": "pause"

}

To resume all timelines, the request payload is:

{
"action": "resume"

}

To release all timelines in 2 seconds, the request payload would be:

{
"action": "release",
"fade": 2.0

}

To release all timelines except those in group B in 2 seconds, the request payload would be:

{
"action": "release",
"group": "!B",
"fade": 2.0

}

To set the rate of timeline 5 to half the default range, the request payload would be:

{
"action": "set_rate",
"num": 5,

(continues on next page)

46 Chapter 4. HTTP API

Controller API, Release 8.0

(continued from previous page)

"rate": "0.5"
}

To set the position of timeline 1 to a third of the way through, the request payload would be:

{
"action": "set_position",
"num": 1,
"position": "1:3"

}

GET

Returns data about the timelines in the project and their state on the controller.

GET /api/timeline[?num=timelineNumbers]

num can be used to filter which timelines are returned and is expected to be either a single number or a string expressing
the required timelines, e.g. "1,2,5-9".

Returns a JSON object with a single timelines attribute, which has an array value. Each item in the array is a Timeline
object with the following attributes:

Attribute Value
Type

Description Value Example

num integer Timeline number 1
name string Timeline name "Timeline 1"
group string Timeline group name (A through H or empty string) "A"
length integer Timeline length, in milliseconds 10000
source_bus string internal, timecode_1 . . . timecode_6,

audio_1 . . . audio_4
"internal"

timecode_format string Incoming timecode format on source bus "SMPTE30"
audio_band integer 0 is volume band 0
audio_channel string left, right or combined "combined"
audio_peak boolean The Peak setting of the timeline, if set to an audio

time source
false

time_offset integer 1/1000 of a second 5000
state string none, running, paused, holding_at_end or

released
"running"

onstage boolean Whether the timeline is affecting output of any fix-
tures

true

position integer 1/1000 of a second 10000
priority string high, above_normal, normal, below_normal or

low
"normal"

custom_properties object Object properties and property values correspond
to custom property names and values

{}

4.3. Querying and Controlling 47

Controller API, Release 8.0

4.3.32 Trigger

Methods

POST

Fire a trigger in the project.

POST /api/trigger

Payload is a JSON object with the following attributes:

Attribute Value Type Description Value Example
num integer User number of the trigger to fire. 2
var string Optional. Comma-separated to pass into the trig-

ger.
e.g. a string "Foo"; in-
tegers 2,4,5; multiple
strings '"string1",
"string2",
"string3"'

conditions boolean Optional. Whether to test the trigger’s conditions
before deciding to run its actions. Defaults to true.

true

GET

Returns the triggers in the project.

GET /api/trigger?[type=triggerType]

triggerType is expected to be a string and can be used to filter the type of trigger returned. For example, "Timeline
Started" would return only Timeline Started triggers in the project.

Returns a JSON object with a single triggers attribute, which has an array value. Each item in the array is a Trigger
object with the following attributes:

Attribute Value
Type

Description Value Example

type string Trigger type "Startup"
num integer Trigger user number 1
name string User-defined trigger name "Initialise"
group string Trigger group colour as a hex colour string "#e18383"
description string User-defined description of trigger ""
trigger_text string Generated description of when the trigger will run,

based on its properties
"At startup"

conditions array Array of Condition objects (see below) [{"text":"Before
12:00:00 every
day"}]

actions array Array of Action objects (see below) [{"text":"Start
Timeline 1"}]

The Condition and Action objects have the following properties:

48 Chapter 4. HTTP API

Controller API, Release 8.0

Attribute Value
Type

Description Value Example

text string Generated description of the condition or action,
based on its properties

"Start Timeline 1"

4.3.33 User

This allows user accounts on the controller to be added, modified, or removed.

Methods

POST

POST /api/user

Add a new user. The payload is a JSON object with the following attributes:

Attribute Value Type Description Value Example
session_password string The password for the current session. "my_password"
username string The name of the new user to add "bob"
password string The new user’s password. "bobs_password"
access array of

strings
The access level(s) to grant the new user. Includes
Admin, Control and Status.

["Control",
"Status"]

PUT

PUT /api/user

Update a user account with a new password and/or access groups. The payload is a JSON object with the following
attributes:

Attribute Value Type Description Value Example
session_password string The password for the current session. "my_password"
"username" string The name of the user to modify "bob"
password string The user’s updated password. "bobs_password"
access array of

strings
The access level(s) to grant the user. Includes Ad-
min, Control and Status.

["Control",
"Status"]

4.3. Querying and Controlling 49

Controller API, Release 8.0

DELETE

DELETE /api/user

Update a user account with a new password and/or access groups. The payload is a JSON object with the following
attributes:

Attribute Value Type Description Value Example
session_password string The password for the current session. "my_password"
username string The name of the user to delete "bob"

4.3.34 User Groups

These methods allow discovery of the user and guest groups on the controller.

Methods

GET

GET /api/user_groups

Get the list of available user groups. Returns a JSON object with the following attributes:

Attribute Value Type Description Value Example
user_groups array of

strings
The list of available groups. ["Admin",

"Control",
"Status"]

GET

GET /api/guest_groups

Get the list of available guest groups. Returns a JSON object with the following attributes:

Attribute Value Type Description Value Example
guest_groups array of

strings
The list of available guest groups. ["Foo", "Bar"]

50 Chapter 4. HTTP API

Controller API, Release 8.0

4.3.35 HTTP API Objects

Reference for objects used in the controller HTTP API.

DALI Power

The DALI power object has the following attributes:

Parameter Value
Type

Description Value Example

dali_bus_uptime integer The amount of time the DALI bus has been up, in min-
utes

368

power_failures array
of date-
time

A list of the time and dates of recent power failures ["01 Feb 2017
13:44:42",
"30 Nov 2022
08:33:01"]

DALI Error

The DALI error object has the following attributes:

Parameter Value
Type

Description Value Example

address integer The DALI bus address of the device with the error 12
test string The test that discovered the error "Function"
error string A description of the DALI error "Battery

Duration"
fixed boolean Whether the error has been fixed. Once fixed, the er-

ror remains in the list until it is retested.
true

DALI Schedule

The DALI ballast status object has the following attributes:

Parameter Value
Type

Description Value Example

next_function_test date-
time

The next date and time automated function test will
occur

"01 Feb 2017
13:44:42"

next_duration_test date-
time

The next date and time automated duration test will
occur

"01 Feb 2017
13:44:42"

prev_function_test date-
time

The previous date and time automated function test
occurred

"01 Feb 2017
13:44:42"

prev_duration_test date-
time

The previous date and time automated duration test
occurred

"01 Feb 2017
13:44:42"

4.3. Querying and Controlling 51

Controller API, Release 8.0

DALI Ballast Status

The DALI ballast status object has the following attributes:

Parameter Value
Type

Description Value Example

address integer The ballast address 12
user_name string The user assigned name of the ballast "Center Room"
status string A string representing the current status of the ballast "Lamp Failure"
actual_level integer The current actual output level of the ballast 128
battery_level integer For emergency ballasts only - the level of the battery

reported
12

battery_charged boolean Whether or not the battery is charged True
lamp_emergency_hours integer How many hours the fixture has been on in emergency

state
12

lamp_total_hours integer How many hours the fixture has been on in total 400
last_status_check date/time The last date and time the ballast status was checked 0

RDM Device Info

Where an RDM Device Info object is returned from an API request, it will have the following attributes:

52 Chapter 4. HTTP API

Controller API, Release 8.0

Parameter Value
Type

Description Value Example

uid string Format is {manuId}:{deviceId}(:{subId})
where {manuId} is a padded unsigned hexadec-
imal integer of width 4, lowercase, e.g. 072c;
{deviceId} is a padded unsigned hexadecimal inte-
ger of width 8, lowercase, e.g. 0004fe02; {subId}
is an optional unsigned decimal integer.

"072c:0004fe02"

rdm_protocol_version integer 16 bit value encoding the major version in the most
significant byte and the minor version in the least sig-
nificant byte. The current standard v1.0 is therefore
0x0100.

0x0100

device_model_id integer Device model ID of the Root Device or the Sub-
Device. Must be unique within the products of a man-
ufacturer.

1836

product_category integer 16 bit value encoding the coarse category in
the upper eight bits and the (optional) fine
category in lower eight bits, e.g. 0x0100 is
PRODUCT_CATEGORY_FIXTURE with no fine cate-
gory.

0x0100

software_version_id integer Software version ID for the device, which is a 32-bit
value determined by the manufacturer. It may use any
encoding scheme such that the controller may iden-
tify devices containing the same software versions.
Any devices from the same manufacturer with differ-
ing software will not report the same software version
ID.

dmx512_footprint integer
(0-512)

The DMX footprint of the device - the number of con-
secutive DMX slots required to patch the device. If
the device is a sub-device, then the value is the DMX
footprint for that sub-device. If the device is the root
device, it is the footprint for the root device itself.

3

dmx512_personality integer 16 bit field, encoding the current personality in the
upper 8 bits and the total number of personalities sup-
ported by the device in the lower 8 bits.

0x0102

dmx512_start_address integer The DMX start address of the device, or 0xffff if
the device has a DMX footprint of zero.

7

sub_device_count integer Number of sub devices represented by the root device.
This value is always the same regardless of whether
the device is the root device or a sub-device.

0

sensor_count integer Number of available sensors in a root device or sub-
device. For sub-devices, this value is identical for any
sub-device owned by the same root device. When
a device or sub-device is fitted with a single sensor,
it will return a value of 0x01 for the sensor count.
This sensor would then be addressed as sensor num-
ber 0x00 when using the other sensor-related param-
eter messages.

0

4.3. Querying and Controlling 53

Controller API, Release 8.0

RDM Universe Key

Used to specify the target universe for RDM operations. It is a JSON object with the following attributes:

Attribute Value
Type

Description

protocol integer Output protocol (see Enumerated Protocols).
index integer Only required for protocols DMX and ART-NET.
remote_device_num integer Only required for protocol EDN. The remote device number of the

EDN node.
remote_device_type integer Only required for protocol EDN. The type of EDN as defined in

Enumerated EDN Device Types.
port integer Only required for protocol EDN. The port on the EDN.

Enumerated Protocols

Constants for protocols are defined in query.js as follows:

Name Value
DMX 1
PATHPORT 2
ARTNET 4
KINET 8
SACN 16
DVI 32
RIO_DMX 64
EDN 128

Enumerated EDN Device Types

Constants for EDN types are defined in query.js as follows:

Name Value
EDN20 109
EDN10 110

54 Chapter 4. HTTP API

CHAPTER

FIVE

JAVASCRIPT QUERY LIBRARY

Mosaic controllers provide a JavaScript library, accessible at /default/js/query.js. Controller projects may have
a custom web interface, whose source files may include this library to provide convenient access to the controller HTTP
API through JavaScript callbacks and to real time status updates through websocket subscriptions.

5.1 Including the Library

The query.js library may be included within the <head> in any HTML file within a custom web interface created for a
Mosaic Designer project as follows:

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, user-

→˓scalable=yes">
<!--Include query.js library-->
<script type="text/javascript" src="/default/js/query.js" defer></script>

</head>
<body>
<!-- etc. -->
</body>

</html>

5.2 Event Handlers

Functions are provided in the library to set event handlers.

• set_success_handler(success) - function passed as success will be called when a websocket connection
is successfully established with the controller and when a response is received to an HTTP API request.

• set_error_handler(error) - function passed as error will be called when a websocket connection cannot
be established with the controller and when an error is encountered as part of making an HTTP API request.

• set_restart_handler(restart) - function passed as restart will be called when the controller has
restarted, at which point any users must authenticate again.

• set_redirect_handler(redirect) - function passed as redirect will be called when a request is unautho-
rized. The function will be passed the url of the default login page as a string, and may choose to return this (the
default behaviour) or return the path of a custom login page.

55

Controller API, Release 8.0

For example:

Query.set_redirect_handler((suggestion) => {
console.log("Suggested redirect: " + suggestion)
return "/custom-login.html"

})

5.3 Querying and Controlling

The functions provided in query.js for querying and controlling the controller and its current project are in the following
sections:

5.3.1 Beacon

Functions

toggle_beacon

Toggle beacon mode on the controller.

toggle_beacon(callback)

In beacon mode, a controller will flash its LEDs or it screen continuously.

5.3.2 Channel / Park

Functions

park_channel

Park an output channel or channels at a specified level.

park_channel(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

unpark_channel

Unpark an output channel or channels.

unpark_channel(params, callback)

params is expected to be an object with the same attributes as the HTTP DELETE request.

56 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

5.3.3 Command

Functions

run_command

Run a Lua script or pass a command to the command line parser on the controller.

Note: The Command Line Parser must be enabled in the web interface settings of the current project, else this function
will not be available.

run_command(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

Returns Executed if the script was executed successfully or an error string if not.

5.3.4 Config

Functions

edit_config

Edits the configuration of the controller.

edit_config(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

The callback function will be passed the same object as is received from the HTTP POST request.

get_config

Returns information about the queried controller’s configuration.

get_config(callback)

Returns an object with the same attributes as in the HTTP GET response.

For example:

Query.get_config(config => {
let year = config.year

})

5.3. Querying and Controlling 57

Controller API, Release 8.0

5.3.5 Content Targets

Note: Atlas/Atlas Pro only

Functions

master_content_target_intensity

master_content_target_intensity(params, callback)

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
type string Optional. Type of content target (only relevant

on Atlas Pro): primary, secondary, target_3,
target_4, target_5, target_6, target_7,
target_8. Defaults to primary.

"secondary"

level float or string con-
taining a bounded
integer

Master level to set on the group 0.5 or "50:100"

fade float Optional. Fade time to apply the intensity change,
in seconds.

2.0

delay float Optional. Time to wait before applying the inten-
sity change, in seconds.

2.0

get_content_target_info

get_content_target_info(callback)

Returns an object with a single content_targets attribute, which has an array value. Each item in the array is a
Content Target object with the same attributes as in the HTTP GET response.

For example:

Query.get_content_target_info(c => {
let level = c.content_targets[0].level // level of primary content target

})

58 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

5.3.6 Controller

Functions

get_controller_info

get_controller_info(callback)

Returns an object with a single controllers attribute, which has an array value. Each item in the array is a Controller
object with the same attributes as in the HTTP GET response.

For example:

Query.get_controller_info(data => {
for(index in data.controllers) {
console.log("Controller " + index + " name is " + data.controllers[index].name);

}
});

Will print out the name of each controller to the console.

5.3.7 Group

Note: Not applicable to Atlas/Atlas Pro

Functions

master_intensity

master_intensity(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num integer Group number. Group 0 means the All Fixtures

group.
1

level float or string con-
taining a bounded
integer

Master level to set on the group 0.5 or "50:100"

fade float Optional. Fade time to apply the intensity change,
in seconds.

2.0

delay float Optional. Time to wait before applying the inten-
sity change, in seconds.

2.0

For example:

5.3. Querying and Controlling 59

Controller API, Release 8.0

// Master group 1 to 50% in 3 seconds
Query.master_intensity({
"num":1,
"level":"50:100",
"fade":3

}, result => {
// Check for error

})

get_group_info

Returns data about the fixture groups in the project.

get_group_info(callback[, num])

Returns an object with a single groups attribute, which has an array value. Each item in the array is a Group object
with the same attributes as in the HTTP GET response.

num can be used to filter which groups are returned and is expected to be a JSON object with the following attributes:

Attribute Value Type Description Value Example
num string or inte-

ger
Define the numbers of the group that should be re-
turned

"1,2,5-9" or 5

Note: Group 0 will return data about the All Fixtures group.

For example:

Query.get_group_info(g => {
let name = g.groups[0].name // name of the first group returned

}, {"num":"2-4"})

5.3.8 Input

There’s no function in the JavaScript Query library to get the digital & analogue inputs at the moment.

5.3.9 Log

There’s no function in the JavaScript Query library to get the log at the moment.

60 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

5.3.10 Lua Variable

Functions

get_lua_variables

Returns the current value of specified Lua variables.

get_lua_variables(luaVariables, callback)

Returns an object with the requested Lua variables and their values as key/value pairs, in the same manner as the HTTP
GET request.

luaVariables can be a string or an array of strings, where each string is a Lua variable name. The Lua variable must
be directly accessible from the Lua global table.

For example:

--[[Lua definitions]]--
foo = 'spam'
bar = {

a = 'ham',
b = 100

}
local baz = 'eggs'

/* Javascript Query */
Query.get_lua_variables(["foo","bar"], v => {
let foo = v.foo // foo contains "spam"
console.log(typeof foo) // Output: "string"
let bar = v.bar // bar contains a javascript object { a: "ham", b: 100 }
console.log(typeof bar) // Output: "object"
console.log(typeof bar.a) // Output: "string"
console.log(typeof bar.b) // Output: "number"

})

// Invalid query, `a` is a child of `bar` and not directly accessible from the global␣
→˓table
Query.get_lua_variables(["bar.a"], v => {})

// Invalid query, `baz` is scoped locally, and inaccessible from the global table
Query.get_lua_variables(["baz"], v => {})

5.3. Querying and Controlling 61

Controller API, Release 8.0

5.3.11 Output

Functions

disable_output

Disable the output of a specified protocol from the controller. Propagates to all controllers in a project.

disable_output(params, callback)

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
protocol string Protocol to disable. Options: dmx, pathport,

sacn, art-net, kinet, rio-dmx, edn, edn-spi.
"parthport"

enable_output

Enable the output of a specified protocol from the controller. Propagates to all controllers in a project.

enable_output(params, callback)

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
protocol string Protocol to enable. Options: dmx, pathport,

sacn, art-net, kinet, rio-dmx, edn, edn-spi.
"parthport"

get_output

Returns the lighting levels being output by the queried controller.

get_output(universeKey, callback)

Returns an object with the same attributes as in the HTTP GET response.

universeKey can be a string (see Universe Key String Format) or it can be an object with the following attributes:

Attribute Value
Type

Description

protocol integer Output protocol (see Enumerated Protocols)
index integer Required unless protocol is KINET, RIO_DMX or EDN
kinet_power_supply_num integer Only required if protocol is KINET
kinet_port integer Only required if protocol is KINET
remote_device_type integer Only required if protocol is RIO_DMX or EDN (see Enumerated Remote

Device Types)
remote_device_num integer Only required if protocol is RIO_DMX or EDN
port integer Only required if protocol is EDN

For example:

62 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

Query.get_output({
protocol: KINET,
kinet_port: 1,
kinet_power_supply_num: 1

}, u => {
console.log(u)
}

)

Query.get_output({
protocol: DMX,
index: 1

}, u => {
console.log(u)

}
)

Query.get_output("dmx:1", u => {
console.log(u)

})

Universe Key String Format

A universe key string takes the form:

• protocol:index for protocols dmx, pathport, sacn, art-net;

• protocol:kinetPowerSupplyNum:kinetPort for protocol kinet;

• protocol:remoteDeviceType:remoteDeviceNum for protocol rio-dmx;

• protocol:remoteDeviceType:remoteDeviceNum:port for protocols edn, edn-spi.

Where:

• kinetPowerSupplyNum is an integer;

• kinetPort is an integer;

• remoteDeviceType can be rio08, rio44 or rio80, edn10 or edn20;

• remoteDeviceNum is an integer;

• port is an integer.

For example:

• "dmx:1"

• "rio-dmx:rio44:1"

5.3. Querying and Controlling 63

Controller API, Release 8.0

Enumerated Protocols

Constants for protocols are defined in query.js as follows:

Name Value
DMX 1
PATHPORT 2
ARTNET 4
KINET 8
SACN 16
DVI 32
RIO_DMX 64
EDN 128

Enumerated Remote Device Types

Constants for RIO types are defined in query.js as follows:

Name Value
RIO80 101
RIO44 102
RIO08 103

Constants for EDN types are defined in query.js as follows:

Name Value
EDN20 109
EDN10 110

5.3.12 Override

Functions

set_group_override

Set the Intensity, Red, Green, Blue levels for a group. Propagates to all controllers in a project.

set_group_override(params, callback)

params is expected to be an object with the following attributes:

64 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

Attribute Value
Type

Description Value Example

num integer Group or fixture number, depending on target. Group
0 means the All Fixtures group.

1

intensity integer
or string

Optional. Either an integer (0-255) representing the
intensity to set as part of override or the string
"snapshot" to capture the current intensity of the fix-
ture(s) and set this as the override value. Intensity over-
ride will not be changed if this attribute isn’t provided.

128

colour Over-
ride
Colour
or string

Optional. Specifies the colour to set as part of the
override. Either an Override Colour or the string
"snapshot" to capture the current colour of the fix-
ture(s) and set this as the override. JSON object with
the same attributes as the HTTP PUT request.

temperature integer
or string

Optional. Either an integer (0-255) representing the tem-
perature component to set as part of override or the
string "snapshot" to capture the current temperature
component of the fixture(s) and set this as the override
value. Temperature override will not be changed if this
attribute isn’t provided.

128

fade float Optional. Fade time to apply the override change, in sec-
onds.

2.0

path string Optional. Crossfade path to use when applying the
override: Default, Linear, Start, End, Braked,
Accelerated, Damped, Overshoot, Col At Start,
Col At End, Int At Start, Int At End, Colour
First, Intensity First

"Braked"

clear_group_overrides

Release any overrides on a group, or all groups. Propagates to all controllers in a project.

clear_group_overrides(params, callback)

params is expected to be an object with the following attributes:

Attribute Value
Type

Description Value Example

num integer Optional. Group number. If not provided, all over-
rides are cleared.

1

fade float Optional. Fade time in which to release overrides,
in seconds.

2.0

5.3. Querying and Controlling 65

Controller API, Release 8.0

set_fixture_override

Set the Intensity, Red, Green, Blue levels for a fixture. Propagates to all controllers in a project.

set_fixture_override(params, callback)

params is expected to be an object with the same attributes as for set_group_override.

clear_fixture_overrides

Release any overrides on a fixture, or all fixtures. Propagates to all controllers in a project.

clear_fixture_overrides(params, callback)

params is expected to be an object with the following attributes:

Attribute Value
Type

Description Value Example

num integer Optional. Fixture number. If not provided, all over-
rides are cleared.

1

fade float Optional. Fade time in which to release overrides,
in seconds.

2.0

clear_all_overrides

Release all overrides. Propagates to all controllers in a project.

clear_all_overrides(params, callback)

params is expected to be an object with the following attributes:

Attribute Value
Type

Description Value Example

fade float Optional. Fade time in which to release overrides,
in seconds.

2.0

5.3.13 Project

Functions

get_project_info

Returns data about the current project.

get_project_info(callback)

Returns an object with the same attributes as in the HTTP GET response.

For example:

66 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

Query.get_project_info(project => {
const author = project.author

})

5.3.14 Protocol

Functions

get_protocols

Returns all the universes in the project on the queried controller.

get_protocols(callback)

Returns an object with a single outputs attribute, which has an array value. Each item in the array is a Protocol object
with the same attributes as in the HTTP GET response.

For example:

Query.get_protocols(p => {
const protocol_name = p.outputs[0].name // name of the first protocol

})

5.3.15 RDM Discovery

Functions

start_rdm_discovery

Request to start a full RDM discovery. Results are available via subscribe_rdm_discovery.

start_rdm_discovery(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

5.3.16 RDM Get

Functions

start_rdm_get

Request to start an RDM Get operations. Results are available via subscribe_rdm_get_set.

start_rdm_get(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

5.3. Querying and Controlling 67

Controller API, Release 8.0

5.3.17 RDM Set

Functions

start_rdm_set

Request to start an RDM Set operations. Results are available via subscribe_rdm_get_set.

start_rdm_set(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

5.3.18 Remote Device

Functions

get_remote_device_info

Returns data about all the remote devices in the project.

get_remote_device_info(callback)

Returns an object with a single remote_devices attribute, which has an array value. Each item in the array is a
Remote Device object with the same attributes as in the HTTP GET response.

For example:

Query.get_remote_device_info(r => {
const type = r.remote_devices[0].type // type of the first remote device

})

5.3.19 Replication

Functions

get_replication

Returns data about the install replication.

get_replication(callback)

Returns an object with the same attributes as in the HTTP GET response.

68 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

5.3.20 Scene

Functions

start_scene

start_scene(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value
Type

Description Value Example

num integer Scene number 5

For callback please see JavaScript Command Callback.

release_scene

release_scene(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value
Type

Description Value Example

num integer Scene number 5
fade float Optional. Release fade time in seconds. If not provided,

the default fade time will be used.
2.0

For callback please see JavaScript Command Callback.

toggle_scene

toggle_scene(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value
Type

Description Value Example

num integer Scene number 5
fade float Optional. The release fade time in seconds to apply if

the toggle action results in the scene being released. If
not provided, the default fade time will be used.

2.0

For callback please see JavaScript Command Callback.

5.3. Querying and Controlling 69

Controller API, Release 8.0

release_all_scenes

release_all_scenes(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value
Type

Description Value Example

fade float Optional. Release fade time in seconds. If not provided,
the default fade time will be used.

2.0

group variant Optional. Scene group name or number. If name,
prepend the name with ! to apply the action to all groups
except the specified group.

"Group 1", "!
Group 2" or 3

For callback please see JavaScript Command Callback.

release_all

Release all timelines and scenes. Propagates to all controllers in a project.

release_all(params, callback)

params is expected to be an object with the following attributes:

Attribute Value
Type

Description Value Example

fade float Optional. Release fade time in seconds. If not provided,
the default fade time will be used.

2.0

group variant Optional. Timeline/Scene group name or number. If
name, prepend the name with ! to apply the action to
all groups except the specified group.

"Group 1", "!
Group 2" or 3

For callback please see JavaScript Command Callback.

get_scene_info

Returns data about the scenes in the project and their state on the controller.

get_scene_info(callback[, num])

Returns an object with a single scenes attribute, which has an array value. Each item in the array is a Scene object
with the same attributes as in the HTTP GET response.

num can be used to filter which scenes are returned and is expected to be a JSON object with the following attributes:

Attribute Value
Type

Description Value Example

num string or
integer

Define the numbers of the scene that should be returned "1,2,5-9" or 5

70 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

For example:

Query.get_scene_info(s => {
let name = s.scenes[0].name // name of the first scene returned

}, {"num":"1,2-5"})

JavaScript Command Callback

Functions in the JavaScript API that perform actions on the controller, e.g. start_timeline, have an optional
callback argument. This expects a function, which is called when a response to the underlying HTTP API request is
received. Its argument, if non-null, is the response body. If the content type of the response was "application/json"
then the argument will be an object - the result of parsing the body as JSON.

5.3.21 System

Functions

get_system_info

get_system_info(callback)

Returns an object with the same attributes as in the HTTP GET response.

For example:

Query.get_system_info(system => {
const capacity = system.channel_capacity

})

5.3.22 Temperature

Functions

get_temperature

get_temperature(callback)

Returns an object with the same attributes as in the HTTP GET response.

For example:

Query.get_temperature(temp => {
const ambient = temp.ambient_temp

})

5.3. Querying and Controlling 71

Controller API, Release 8.0

5.3.23 Text Slots

Functions

set_text_slot

Set the value of a text slot used in the project, which will propagate to all controllers in a project.

set_text_slot(params, callback)

params is expected to be an object with the same attributes as the HTTP PUT request.

get_text_slot

Returns data about the text slots in the project and their current values.

get_text_slot(callback[, filter])

Returns an object with a single text_slots attribute, which has an array value. Each item in the array is a Text Slot
object with the same attributes as in the HTTP GET response.

filter can be used to filter which text slots are returned and is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
names string or ar-

ray
Define the names of the text slots that should be re-
turned, either as a single string or an array of strings

["test_slot1",
"anotherSlot"] or
"test_slot1"

For example:

Query.get_text_slot(t => {
let value = t.text_slots[0].value // value of the first text slot returned

}, {"names":["test_slot1","test_slot2"]})

5.3.24 Time

Functions

get_current_time

get_current_time(callback)

Returns an object with the same attributes as in the GET GET response.

For example:

Query.get_current_time(time => {
const uptime = time.uptime

})

72 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

5.3.25 Timeline

Functions

start_timeline

start_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num integer Timeline number 5

For callback please see JavaScript Command Callback.

release_timeline

release_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num integer Timeline number 5
fade float Optional. Release fade time in seconds. If not pro-

vided, the default fade time will be used.
2.0

For callback please see JavaScript Command Callback.

toggle_timeline

toggle_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num integer Timeline number 5
fade float Optional. The release fade time in seconds to apply if

the toggle action results in the timeline being released.
If not provided, the default fade time will be used.

2.0

For callback please see JavaScript Command Callback.

5.3. Querying and Controlling 73

Controller API, Release 8.0

pause_timeline

pause_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num integer Timeline number 5

For callback please see JavaScript Command Callback.

resume_timeline

resume_timeline(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num integer Timeline number 5

For callback please see JavaScript Command Callback.

pause_all

Pause all timelines in the project which are currently running. Propagates to all controllers in a project.

pause_all(callback)

For callback please see JavaScript Command Callback.

resume_all

Resume all timelines in the project which are currently paused. Propagates to all controllers in a project.

resume_all(callback)

For callback please see JavaScript Command Callback.

74 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

release_all_timelines

release_all_timelines(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
fade float Optional. Release fade time in seconds. If not pro-

vided, the default fade time will be used.
2.0

group variant Optional. Timeline group name or number. If name,
prepend the name with ! to apply the action to all
groups except the specified group.

"Group 1", "!
Group 2" or
3

For callback please see JavaScript Command Callback.

release_all

Release all timelines and scenes. Propagates to all controllers in a project.

release_all(params, callback)

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
fade float Optional. Release fade time in seconds. If not pro-

vided, the default fade time will be used.
2.0

group variant Optional. Timeline/Scene group name or number. If
name, prepend the name with ! to apply the action to
all groups except the specified group.

"Group 1", "!
Group 2" or
3

For callback please see JavaScript Command Callback.

set_timeline_rate

set_timeline_rate(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num integer Timeline number 5
rate string A string containing a floating point number or a

bounded integer, where 1.0 means the timeline’s de-
fault rate.

"0.1" or
"10:100"

For callback please see JavaScript Command Callback.

5.3. Querying and Controlling 75

Controller API, Release 8.0

set_timeline_position

set_timeline_position(params, callback)

Propagates to all controllers in a project.

params is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num integer Timeline number 5
position string A string containing a floating point number or a

bounded integer, representing a fraction of the time-
line length.

"0.1" or
"10:100"

For callback please see JavaScript Command Callback.

get_timeline_info

get_timeline_info(callback[, num])

Returns data about the timelines in the project and their state on the controller.

Returns an object with a single timelines attribute, which has an array value. Each item in the array is a Timeline
object with the same attributes as in the HTTP GET response.

num can be used to filter which timelines are returned and is expected to be an object with the following attributes:

Attribute Value Type Description Value Example
num string or integer Define the numbers of the timeline that should be re-

turned
"1,2,5-9" or 5

For example:

Query.get_timeline_info(t => {
let name = t.timelines[0].name // name of the first timeline returned

}, {"num":"1-4"})

JavaScript Command Callback

Functions in the JavaScript API that perform actions on the controller, e.g. start_timeline, have an optional
callback argument. This expects a function, which is called when a response to the underlying HTTP API request is
received. Its argument, if non-null, is the response body. If the content type of the response was "application/json"
then the argument will be an object - the result of parsing the body as JSON.

76 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

5.3.26 Trigger

Functions

fire_trigger

fire_trigger(params, callback)

params is expected to be an object with the same attributes as the HTTP POST request.

get_trigger_info

get_trigger_info(callback[, type])

Returns an object with a single triggers attribute, which has an array value. Each item in the array is a Trigger object
with the same attributes as in the HTTP GET response.

type is expected to be a string and can be used to filter the type of trigger returned. For example, "Timeline Started"
would return only Timeline Started triggers in the project.

For example:

Query.get_trigger_info(t => {
let name = t.triggers[0].name // name of first startup trigger returned

}, "Startup")

5.4 Subscriptions

Websocket subscriptions allow data to be pushed to the web client whenever there is a change within the project. The
query.js library includes functions with callbacks to subscribe to each channel and return any data received.

5.4.1 Websocket Subscriptions

Websocket subscriptions allow data to be pushed to the web client whenever there is a change within the project. The
query.js library includes functions with callbacks to subscribe to each channel and return any data received.

Functions

subscribe_timeline_status

Subscribe to changes in timeline status.

subscribe_timeline_status(callback)

The callback is called each time a timeline changes state on the controller. Each time it is passed an object with the
following attributes:

5.4. Subscriptions 77

Controller API, Release 8.0

Attribute Value Type Description Value Example
num integer Timeline number 1
state string The new state of the timeline: none, running, paused,

holding_at_end, released
"running"

onstage boolean Whether the timeline is currently affecting the output of
any fixtures in the project.

true

position integer Current time position of the timeline playback, in mil-
liseconds

5000

For example:

Query.subscribe_timeline_status(t => {
alert(t.num + ": " + t.state)

})

subscribe_scene_status

Subscribe to changes in scene status.

subscribe_scene_status(callback)

The callback is called each time a scene changes state on the controller. Each time it is passed an object with the
following attributes:

Attribute Value Type Description Value Example
num integer Scene number 1
state string The new state of the scene: none, started, released "started"
onstage boolean Whether the scene is currently affecting the output of any

fixtures in the project.
true

For example:

Query.subscribe_scene_status(s => {
alert(s.num + ": " + s.state)

})

subscribe_group_status

Subscribe to changes in group level, as set by the Master Intensity action.

subscribe_group_status(callback)

The callback is called each time the group master level changes on the controller. Each time it is passed an object
with the following attributes:

Attribute Value Type Description Value Example
num integer Group number 1
name string Group name "Group 1"
level integer New master intensity level of the group: 0-255 128

78 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

For example:

Query.subscribe_group_status(g => {
alert(g.num + ": " + g.level)

})

subscribe_remote_device_status

Subscribe to changes in remote device online/offline status.

subscribe_remote_device_status(callback)

The callback is called each time the remote device online/offline status changes. Each time it is passed an object with
the following attributes:

Attribute Value Type Description Value Example
num integer Remote device number 1
type string Type of remote device: RIO 80, RIO 44, RIO 08, BPS,

RIO A, RIO D, EDN 20, EDN 10
"RIO 80"

online boolean New online state of the remote device true
serial string Remove device serial number "001001"

For example:

Query.subscribe_remote_device_status(r => {
alert(r.num + ": " + (r.online ? "online" : "offline"))

})

subscribe_beacon

Subscribe to changes in the device beacon.

subscribe_beacon(callback)

The callback is called each time the controller beacon status changes. Each time it is passed an object with the
following attributes:

Attribute Value Type Description Value Example
on boolean New beacon status true

For example:

Query.subscribe_beacon(b => {
alert(b.on ? "Beacon turned on" : "Beacon turned off")

})

5.4. Subscriptions 79

Controller API, Release 8.0

subscribe_lua

The receiver for the push_to_web() Lua function.

subscribe_lua(callback)

The callback is called each time a script on the controller calls the push_to_web() function. Each time it is passed
an object with a single attribute - the name or key string passed as the first argument to push_to_web(). The value of
this attribute is the second argument passed to push_to_web(), converted to a string.

For example, if a project needs to send a touch slider level to the web interface, it might have the following in a trigger
Lua script:

level = getMySliderLevel() -- user-defined function to get the current slider level
push_to_web("slider_level", level) -- invoke callbacks on subscribers

If level is equal to e.g. 56 then the object passed the JavaScript callback will be:

{
"slider_level": "56"

}

And the subscription could be setup as follows:

Query.subscribe_lua(l => {
key = Object.keys(l)[0] // "slider_level" in the above example
value = l.key // "56" in the above example
alert(key + ": " + value)
})

subscribe_rdm_discovery

Subscribe for results from RDM discovery operations.

subscribe_rdm_discovery(callback)

The callback is called every time an RDM device is found during an RDM discovery operation, and to announce when
the RDM discovery operation is finished or has been cancelled. The callback is passed an object with the following
attributes:

Attribute Value Type Description
message_type string Categorises the message, defining what data is present, if any (see be-

low).
universe string The universe on which the RDM operation is acting, in the Universe

Key String Format.
data object Optional. Data appropriate for the message type.

80 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

Device found

"message_type" : "device_found"

The data object will have the following attributes:

Attribute Value Type Description
device_info RDM Device Info RDM device info from the discovered device.
fixture_num integer User number of the fixture in the project with the same DMX address

and footprint as the discovered device, or null if there is no matching
fixture in the project.

Discovery finished

"message_type" : "finished"

The data object will not be present, or will be empty.

Discovery cancelled

"message_type" : "cancelled"

The data object will have the following attributes:

Attribute Value Type Description
error string A description of why the discovery was cancelled.

subscribe_rdm_get_set

Subscribe for results from RDM Get and Set operations.

subscribe_rdm_get_set(callback)

The callback is called to provide the response from RDM Get and Set operations, and to announce when the RDM
operation is finished or has been cancelled. The callback is passed an object with the following attributes:

5.4. Subscriptions 81

Controller API, Release 8.0

Attribute Value Type Description
message_type string Categorises the message, defining what data is present, if any (see be-

low).
universe string The universe on which the RDM operation is acting, in the Universe

Key String Format.
device_id string Format is {manuId}:{deviceId}(:{subId}) where {manuId} is a

padded unsigned hexadecimal integer of width 4, lowercase, e.g. 072c;
{deviceId} is a padded unsigned hexadecimal integer of width 8, low-
ercase, e.g. 0004fe02; {subId} is an optional unsigned decimal inte-
ger.

pid string RDM PID as a human-readable string, e.g. DEVICE_INFO, or a string
containing the hex representation of the enum value of the PID as de-
fined by the RDM standard, e.g. "c1".

data object Optional. Data appropriate for the message type.

Get Finished

"message_type" : "get_finished"

The GET operation indicated by the PID has finished. No data object is expected.

Set Finished

"message_type" : "set_finished"

The SET operation indicated by the PID has finished. No data object is expected.

Get/Set result error

"message_type" : "result_error"

The data object will have the following attributes:

Attribute Value Type Description
error string Description of the error with the response.

Get/Set operation cancelled

"message_type" : "get_cancelled" "message_type" : "set_cancelled"

The data object will have the following attributes:

Attribute Value Type Description
error string Description of why the operation was cancelled.

82 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

Get/Set Result

"message_type" : "result"

Provides the results of the operation, parsed from the response from the device. The data object will be appropriate
for the PID. If pid is a human-readable string, e.g. DEVICE_INFO then data is described under RDM PID result data.
Otherwise, if pid is the hex representation of the enum value of a PID, then data will have one key, raw, the value of
which will be the base64-encoded raw payload data received from the device.

RDM PID result data

When the object passed to the subscribe_rdm_get_set callback has "message_type": "result" and where
pid is a human-readable string, e.g. DEVICE_INFO, the format of the data object is described in one of the following
sections.

Get Communication Status (COMMS_STATUS)

Following a successful GET operation for COMMS_STATUS, the data object in the subscribe_rdm_get_set callback
argument will have the following attributes, which map to the attributes of the same names in the RDM specification
for this response:

• short_message - number (16 bit)

• length_mismatch - number (16 bit)

• checksum_fail - number (16 bit)

Get Status Messages (STATUS_MESSAGES)

Following a successful GET operation for STATUS_MESSAGES, the data object in the subscribe_rdm_get_set call-
back argument will have a status_messages attribute with an array value, the items of which will each have the
following attributes, which map to the attributes of the same names in the RDM specification for this response:

• sub_device_id - number (16 bit)

• status_type - number (8 bit)

• status_message_id - number (16 bit)

• data_value_1 - number (16 bit)

• data_value_2 - number (16 bit)

Get Supported Parameters (SUPPORTED_PARAMETERS)

Following a successful GET operation for SUPPORTED_PARAMETERS, the data object in the
subscribe_rdm_get_set callback argument will have a supported_parameters attribute with an array
value. The array will contain numbers, corresponding to the 16 bit parameter IDs supported by the RDM device, as
described in the RDM specification.

5.4. Subscriptions 83

Controller API, Release 8.0

Get Parameter Description (PARAMETER_DESCRIPTION)

Following a successful GET operation for PARAMETER_DESCRIPTION, the data object in the
subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of
the same names in the RDM specification for this response:

• pid_requested - number (16 bit)

• pdl_size - number (8 bit)

• data_type - number (8 bit)

• command_class - number (8 bit)

• type - number (8 bit)

• unit - number (8 bit)

• prefix - number (8 bit)

• min_valid_value - number (32 bit)

• max_valid_value - number (32 bit)

• default_value - number (32 bit)

• description - string (ASCII, max 32 characters)

Get Device Info (DEVICE_INFO)

Following a successful GET operation for DEVICE_INFO, the data object in the subscribe_rdm_get_set callback
argument will have the following attributes, which map to the attributes of the same names in the RDM specification
for this response:

• rdm_protocol_version - number (16 bit)

• device_model_id - number (16 bit)

• product_category - number (16 bit)

• software_version_id - number (32 bit)

• dmx512_footprint - number (16 bit)

• dmx512_personality - number (16 bit)

• start_address - number (16 bit)

• sub_device_count - number (16 bit)

• sensor_count - number (8 bit)

Get Device Model Description (DEVICE_MODEL_DESCRIPTION)

Following a successful GET operation for DEVICE_MODEL_DESCRIPTION, the data object in the
subscribe_rdm_get_set callback argument will have a model_description attribute with a string value.
The string will be the ASCII model description, 0-32 characters, as described in the RDM specification.

84 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

Get Manufacturer Label (MANUFACTURER_LABEL)

Following a successful GET operation for MANUFACTURER_LABEL, the data object in the subscribe_rdm_get_set
callback argument will have a manufacturer_label attribute with a string value. The string will be the ASCII
manufacturer description, 0-32 characters, as described in the RDM specification.

Get/Set Device Label (DEVICE_LABEL)

Following a successful GET operation for DEVICE_LABEL, the data object in the subscribe_rdm_get_set callback
argument will have a device_label attribute with a string value. The string will be the current ASCII device label,
0-32 characters, as described in the RDM specification.

No data is expected in the response for a SET operation.

Get/Set Factory Defaults (FACTORY_DEFAULTS)

Following a successful GET operation for FACTORY_DEFAULTS, the data object in the subscribe_rdm_get_set
callback argument will have a factory_defaults attribute with a boolean value, indicating whether the device is
currently set to is factory defaults.

No data is expected in the response for a SET operation.

Get Software Version Label (SOFTWARE_VERSION_LABEL)

Following a successful GET operation for SOFTWARE_VERSION_LABEL, the data object in the
subscribe_rdm_get_set callback argument will have a software_version_label attribute with a string
value. The string will be the ASCII software version label, 0-32 characters, as described in the RDM specification.

Get Boot Software Version ID (BOOT_SOFTWARE_VERSION_ID)

Following a successful GET operation for BOOT_SOFTWARE_VERSION_ID, the data object in the
subscribe_rdm_get_set callback argument will have a boot_software_version_id attribute with a 32
bit number value, as described in the RDM specification.

Get Boot Software Version Label (BOOT_SOFTWARE_VERSION_LABEL)

Following a successful GET operation for BOOT_SOFTWARE_VERSION_LABEL, the data object in the
subscribe_rdm_get_set callback argument will have a boot_software_version_label attribute with a
string value. The string will be the ASCII boot version label, 0-32 characters, as described in the RDM specification.

5.4. Subscriptions 85

Controller API, Release 8.0

Get/Set DMX512 Personality (DMX_PERSONALITY)

Following a successful GET operation for DMX_PERSONALITY, the data object in the subscribe_rdm_get_set call-
back argument will have the following attributes, which map to the attributes of the same names in the RDM specifi-
cation for this response:

• current_personality - number (8 bit)

• num_personalities - number (8 bit)

No data is expected in the response for a SET operation.

Get DMX512 Personality Description (DMX_PERSONALITY_DESCRIPTION)

Following a successful GET operation for DMX_PERSONALITY_DESCRIPTION, the data object in the
subscribe_rdm_get_set callback argument will have the following attributes, which map to the attributes of
the same names in the RDM specification for this response:

• personality_requested - number (8 bit)

• dmx512_slots_required - number (16 bit)

• description - string (ASCII, 0-32 characters)

Get/Set DMX512 Starting Address (DMX_START_ADDRESS)

Following a successful GET operation for DMX_START_ADDRESS, the data object in the subscribe_rdm_get_set
callback argument will have a dmx512_address attribute with a 16 bit number value, as described in the RDM speci-
fication.

No data is expected in the response for a SET operation.

Get Slot Info (SLOT_INFO)

Following a successful GET operation for SLOT_INFO, the data object in the subscribe_rdm_get_set callback
argument will have a slot_info attribute with an array value, the items of which will each have the following attributes,
which map to the attributes of the same names in the RDM specification for this response:

• slot_offset - number (16 bit)

• slot_type - number (8 bit)

• slot_label_id - number (16 bit)

Get Slot Description (SLOT_DESCRIPTION)

Following a successful GET operation for SLOT_DESCRIPTION, the data object in the subscribe_rdm_get_set
callback argument will have the following attributes, which map to the attributes of the same names in the RDM
specification for this response:

• slot_number_requested - number (16 bit)

• description - string (ASCII, 0-32 characters)

86 Chapter 5. JavaScript Query Library

Controller API, Release 8.0

Get Sensor Definition (SENSOR_DEFINITION)

Following a successful GET operation for SENSOR_DEFINITION, the data object in the subscribe_rdm_get_set
callback argument will have the following attributes, which map to the attributes of the same names in the RDM
specification for this response:

• sensor_number_requested - number (8 bit)

• type - number (8 bit)

• unit - number (8 bit)

• prefix - number (8 bit)

• range_minimum_value - number (16 bit)

• range_maximum_value - number (16 bit)

• normal_minimum_value - number (16 bit)

• normal_maximum_value - number (16 bit)

• recorded_value_support - number (8 bit)

• description - string (ASCII, 0-32 characters)

Get/Set Sensor (SENSOR_VALUE)

Following a successful GET or SET operation for SENSOR_VALUE, the data object in the subscribe_rdm_get_set
callback argument will have the following attributes, which map to the attributes of the same names in the RDM
specification for this response:

• sensor_number_requested - number (8 bit)

• present_value - number (16 bit)

• lowest_detected_value - number (16 bit)

• highest_detected_value - number (16 bit)

• recorded_value - number (16 bit)

Get/Set Lamp Hours (LAMP_HOURS)

Following a successful GET or SET operation for LAMP_HOURS, the data object in the subscribe_rdm_get_set
callback argument will have the following attributes, which map to the attributes of the same names in the RDM
specification for this response:

• lamp_hours - number (32 bit)

5.4. Subscriptions 87

Controller API, Release 8.0

Get/Set Lamp State (LAMP_STATE)

Following a successful GET or SET operation for LAMP_STATE, the data object in the subscribe_rdm_get_set
callback argument will have the following attributes, which map to the attributes of the same names in the RDM
specification for this response:

• lamp_state - number (8 bit)

Universe Key String Format

A universe key string for RDM takes the form:

• protocol:index for protocols dmx and art-net;

• protocol:remoteDeviceType:remoteDeviceNum:port for protocol edn.

Where:

• remoteDeviceType can be edn10 or edn20;

• remoteDeviceNum is an integer;

• port is an integer.

For example:

• "dmx:1"

• "edn:edn20:1:5"

88 Chapter 5. JavaScript Query Library

CHAPTER

SIX

LUA API

Mosaic controllers offer a Lua API providing access to system information, playback functions and trigger operations.

6.1 Adjustment Target

Note: Only supported on Atlas Pro.

An Adjustment object is returned from get_adjustment.

6.1.1 Properties

Property Value Type
rotation_offset float
x_position_offset float
y_position_offset float

For example:

target = get_adjustment(1)
r_offset = target.rotation_offset

6.1.2 Member functions

The following are member functions of Adjustment objects.

89

Controller API, Release 8.0

transition_rotation

transition_rotation([angle[, count[, period[, delay[, useShortestPath]]]]])

Applies a rotation to the adjustment target according to the parameters:

Parameter Value Type Description Value Exam-
ple

angle float Optional. Angle of rotation to transition to, in degrees. De-
faults to zero.

90.0

count integer Number of times to repeat the rotation transformation. 1
period integer The period of the rotation, in seconds - the time to perform

one count of the transformation.
2

delay integer Time to wait before starting the rotation, in seconds. 0

transition_x_position

transition_x_position([x_offset[, count[, period[, delay]]]])

Moves the adjustment target along the x axis according to the parameters:

Parameter Value Type Description Value Exam-
ple

x_offset float Optional. Offset to apply to the x position. Defaults to 0. 25.0
count integer Number of times to repeat the x translation. 1
period integer The period of the translation, in seconds - the time to per-

form one count of the transformation.
2

delay integer Time to wait before starting the translation, in seconds. 0

transition_y_position

transition_y_position([x_offset[, count[, period[, delay]]]])

Moves the adjustment target along the y axis according to the parameters:

Parameter Value Type Description Value Exam-
ple

y_offset float Optional. Offset to apply to the y position. Defaults to 0. 25.0
count integer Number of times to repeat the y translation. 1
period integer The period of the translation, in seconds - the time to per-

form one count of the transformation.
2

delay integer Time to wait before starting the translation, in seconds. 0

90 Chapter 6. Lua API

Controller API, Release 8.0

6.2 BPS

A BPS object is returned from get_bps.

6.2.1 Member functions

The following are member functions of BPS objects.

get_state

get_state(buttonNum)

Returns the state of the button with integer number buttonNum, which can be one of the constants RELEASED, PRESSED,
HELD or REPEAT.

For example:

bps = get_bps(1)
btn = bps:get_state(1)

set_led

set_led(button, effect[, intensity[, fade]])

Set the effect and intensity of a BPS button LED according to the parameters:

Parameter Value Type Description Value Example
button integer (1-8) Number of the BPS button to set an effect on 1
effect integer Integer value of constants: OFF, ON,

SLOW_FLASH, FAST_FLASH, DOUBLE_FLASH,
BLINK, PULSE, SINGLE, RAMP_ON, RAMP_OFF

SLOW_FLASH

intensity integer (0-255) Optional. Intensity level to set on the LED. If
this parameter is not specified, full intensity will
be set on the LED.

255

fade float Optional. Fade time to apply the override change,
in seconds.

2.0

For example:

-- Set button 1 on BPS 1 to Fast Flash at full intensity
get_bps(1):set_led(1,FAST_FLASH,255)

6.2. BPS 91

Controller API, Release 8.0

6.3 Content Target

Note: Only supported on Atlas and Atlas Pro.

A ContentTarget object is returned from get_content_target.

6.3.1 Properties

Property Value Type Description
master_intensity_level Variant
rotation_offset float Atlas Pro only
x_position_offset float Atlas Pro only
y_position_offset float Atlas Pro only

For example, on a Atlas:

target = get_content_target(1)
current_level = target.master_intensity_level

And on a Atlas Pro:

target = get_content_target(1, PRIMARY)
current_angle = target.rotation_offset

6.3.2 Member functions

The following are member functions of ContentTarget objects.

set_master_intensity

set_master_intensity(level[, fade[, delay]])

Masters the intensity of the content target according to the parameters:

Parameter Value Type Description Value Example
level float (0.0-1.0) or

integer (0-255)
Master level to set on the content target. 0.5 or 128

fade float Optional. Fade time to apply the intensity
change, in seconds.

2.0

delay float Optional. Time to wait before applying the inten-
sity change, in seconds.

3.0

For example, on a Atlas:

-- Master the primary content target in composition 1 to 50% (128/255 = 0.5) in 3 seconds
get_content_target(1):set_master_intensity(128,3)

92 Chapter 6. Lua API

Controller API, Release 8.0

Or on a Atlas Pro:

-- Master the secondary content target in composition 2 to 100% in 2.5 seconds
get_content_target(2, SECONDARY):set_master_intensity(255,2.5)

transition_rotation

Note: Only supported on Atlas Pro.

transition_rotation([angle[, count[, period[, delay[, useShortestPath]]]]])

Applies a rotation to the content target according to the parameters:

Parameter Value Type Description Value Exam-
ple

angle float Optional. Angle of rotation to transition to, in degrees. De-
faults to zero.

90.0

count integer Number of times to repeat the rotation transformation. 1
period integer The period of the rotation, in seconds - the time to perform

one count of the transformation.
2

delay integer Time to wait before starting the rotation, in seconds. 0

transition_y_position

transition_y_position([y_offset[, count[, period[, delay]]]])

Moves the content target along the y axis according to the parameters:

Parameter Value Type Description Value Exam-
ple

y_offset float Optional. Offset to apply to the y position. Defaults to 0. 25.0
count integer Number of times to repeat the y translation. 1
period integer The period of the translation, in seconds - the time to per-

form one count of the transformation.
2

delay integer Time to wait before starting the translation, in seconds. 0

6.4 Controller

A Controller object is returned from e.g. get_current_controller.

6.4. Controller 93

Controller API, Release 8.0

6.4.1 Properties

Property Value
Type

Description Value Example

number integer Controller number 1
name string Controller name "Controller 1"
vlan_tag string VLAN tag number as a string. "None" if

there is no tag set
"65535"

is_network_primary boolean Whether this controller is set as the Network
Primary in the project

true

For example:

cont = get_current_controller()
name = cont.name

6.5 DateTime

A DateTime object is returned from e.g. System properties.

6.5.1 Properties

Property Value Type Value Example
year integer 2022
month integer 12
monthday integer 3
time_string string "11:35:32"
date_string string "03 Dec 2022"
weekday integer (0 => Sunday) 0
hour integer 11
minute integer 35
second integer 32
utc_timestamp integer 1670045912

6.6 Group

A Group object is returned from get_group.

94 Chapter 6. Lua API

Controller API, Release 8.0

6.6.1 Properties

Property Value Type Description Value Example
name string Group name "Group 1"
master_intensity_level Variant The intensity level that this group is cur-

rently being mastered to

For example:

grp = get_group(1)
name = grp.name

6.6.2 Member functions

The following are member functions of Group objects.

set_master_intensity

set_master_intensity(level[, fade[, delay]])

Masters the intensity of the group according to the parameters:

Parameter Value Type Description Value Example
level float (0.0-1.0) or

integer (0-255)
Master level to set on the group 0.5 or 128

fade float Optional. Fade time to apply the intensity
change, in seconds

2.0

delay float Optional. Time to wait before applying the inten-
sity change, in seconds

3.0

For example:

-- Master group 1 to 50% (128/255 = 0.5) in 3 seconds
get_group(1):set_master_intensity(128,3)

6.7 InputThreshold

A InputThreshold object is returned from get_input_threshold for a RIO device, or get_input_threshold for the local
inputs of a controller.

6.7. InputThreshold 95

Controller API, Release 8.0

6.7.1 Properties

Property Value Type Description Value Example
low integer If the input type is DIGITAL, this is the low voltage

threshold. If the input type is ANALOG, this marks
the low end of the voltage range and voltages at or
below this value will be reported as 0%.

4

high integer If the input type is DIGITAL, this is the high voltage
threshold. If the input type is ANALOG, this marks
the high end of the voltage range and voltages at or
above this value will be reported as 100%.

16

6.8 Location

A Location object is returned from get_location.

6.8.1 Properties

Property Value Type Value Example
lat float 51.512
long float -0.303

For example:

lat = get_location().lat

6.9 Override

An Override object is returned from get_fixture_override and get_group_override.

6.9.1 Member functions

The following are member functions of Override objects.

96 Chapter 6. Lua API

Controller API, Release 8.0

set_irgb

set_irgb(intensity, red, green, blue, [fade, [path]])

Overrides the intensity, red, green and blue levels for the fixture or group according to the parameters:

Parameter Value Type Description Value Example
intensity integer (0-255) Intensity level to set as an override. 128
red integer (0-255) Red level to set as an override. 128
green integer (0-255) Green level to set as an override. 128
blue integer (0-255) Blue level to set as an override. 128
fade float Optional. Fade time to apply the override change,

in seconds.
2.0

path string Optional. Crossfade path to use when applying
the override: Default, Linear, Start, End,
Braked, Accelerated, Damped, Overshoot,
Col At Start, Col At End, Int At Start,
Int At End, Colour First, Intensity
First

"Linear"

For example:

-- Get override for fixture 22
override = get_fixture_override(22)
-- Set the override colour to red (and full intensity)
override:set_irgb(255, 255, 0, 0)

set_intensity

set_intensity(intensity, [fade, [path]])

Overrides the intensity level for the fixture or group according to the parameters:

Parameter Value Type Description Value Example
intensity integer (0-255) Intensity level to set as an override. 128
fade float Optional. Fade time to apply the override change,

in seconds.
2.0

path string Optional. Crossfade path to use when applying
the override: Default, Linear, Start, End,
Braked, Accelerated, Damped, Overshoot,
Col At Start, Col At End, Int At Start,
Int At End, Colour First, Intensity
First

"Linear"

For example:

-- Get override for group 3
override = get_group_override(3)
-- Set the intensity to 50% in 2 seconds
override:set_intensity(128, 2.0)

6.9. Override 97

Controller API, Release 8.0

set_red

set_red(red, [fade, [path]])

Overrides the red level for the fixture or group according to the parameters:

Parameter Value Type Description Value Example
red integer (0-255) Red level to set as an override. 128
fade float Optional. Fade time to apply the override change,

in seconds.
2.0

path string Optional. Crossfade path to use when applying
the override: Default, Linear, Start, End,
Braked, Accelerated, Damped, Overshoot,
Col At Start, Col At End, Int At Start,
Int At End, Colour First, Intensity
First

"Linear"

set_green

set_green(green, [fade, [path]])

Overrides the green level for the fixture or group according to the parameters:

Parameter Value Type Description Value Example
green integer (0-255) Green level to set as an override. 128
fade float Optional. Fade time to apply the override change,

in seconds.
2.0

path string Optional. Crossfade path to use when applying
the override: Default, Linear, Start, End,
Braked, Accelerated, Damped, Overshoot,
Col At Start, Col At End, Int At Start,
Int At End, Colour First, Intensity
First

"Linear"

set_blue

set_blue(blue, [fade, [path]])

Overrides the blue level for the fixture or group according to the parameters:

Parameter Value Type Description Value Example
blue integer (0-255) Blue level to set as an override. 128
fade float Optional. Fade time to apply the override change,

in seconds.
2.0

path string Optional. Crossfade path to use when applying
the override: Default, Linear, Start, End,
Braked, Accelerated, Damped, Overshoot,
Col At Start, Col At End, Int At Start,
Int At End, Colour First, Intensity
First

"Linear"

98 Chapter 6. Lua API

Controller API, Release 8.0

set_temperature

set_temperature(temperature, [fade, [path]])

Overrides the temperature level for the fixture or group according to the parameters:

Parameter Value Type Description Value Example
temperature integer (0-255) Temperature level to set as an override. 128
fade float Optional. Fade time to apply the override change,

in seconds.
2.0

path string Optional. Crossfade path to use when applying
the override: Default, Linear, Start, End,
Braked, Accelerated, Damped, Overshoot,
Col At Start, Col At End, Int At Start,
Int At End, Colour First, Intensity
First

"Linear"

clear

clear([fade])

Removes any override on the fixture or group. Optionally specify a fade time in seconds as a float, e.g. 2.0.

For example:

-- Clear the override on fixture 1
get_fixture_override(1):clear()

See also: clear_all_overrides.

6.10 Project

A Project object is returned from get_current_project.

6.10.1 Properties

Property Value Type Value Example
name string "Help Project"
author string "Contoso"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

For example:

project_name = get_current_project().name

6.10. Project 99

Controller API, Release 8.0

6.11 Network 2

Information about the controller’s second network interface is available in the protocol_interface namespace. In
trigger action scripts the protocol_interface namespace is added directly to the environment; in IO modules it is
in the controller namespace, i.e. controller.protocol_interface.

6.11.1 Properties

The protocol_interface namespace has the following properties:

Property Value Type Value Example
has_interface boolean true
is_up boolean true
ip_address string "192.168.1.12"
subnet_mask string "255.255.255.0"
gateway string "192.168.1.1"

For example:

if protocol_interface.has_interface == true then
ip = protocol_interface.ip_address

end

6.12 Replication

A Replication object is returned from get_current_replication.

6.12.1 Properties

Property Value Type Value Example
name string "Help Project"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

For example:

rep_name = get_current_replication().name

100 Chapter 6. Lua API

Controller API, Release 8.0

6.13 RIO

A RIO object is returned from get_rio.

For example:

rio = get_rio(RIO44, 1)
input = rio:get_input(1)
output_state = rio:get_output(1)

6.13.1 Member functions

The following are member functions of RIO objects.

get_input

get_input(inputNum)

Returns the state of the input with integer number inputNum as a boolean if the input is set to Digital or Contact
Closure, or an integer if the input is set to Analog.

For example:

rio = get_rio(RIO44, 3)
input = rio:get_input(1)

get_input_count

get_input_count()

Returns the number of input ports this RIO has.

get_input_type

get_input_type(inputNum)

Returns an integer equal to the one of the constants ANALOG, DIGITAL, CONTACT_CLOSURE according to the configu-
ration of the input port with number inputNum, or nil if inputNum does not correspond to a port.

get_input_threshold

get_input_threshold(inputNum)

Returns an InputThreshold object describing the threshold configurations for the input port with number inputNum,
or nil if inputNum does not correspond to a port.

6.13. RIO 101

Controller API, Release 8.0

get_output_count

get_output_count()

Returns the number of output ports this RIO has.

get_output

get_output(outputNum)

Returns the state of the output with integer number outputNum as a boolean.

For example:

rio = get_rio(RIO44, 2)
output_state = rio:get_output(1)

set_output

set_output(outputNum, state)

Sets the output of a RIO to on or off according to the parameters:

Parameter Value Type Description Value Example
outputNum integer (1-8) Number of the RIO output to change the state of.

Range depends on type of RIO.
1

state boolean or integer State to set the output to. Can be any of: 0, 1,
true, false, ON or OFF

OFF

6.14 Scene

A Scene object is returned from get_scene.

6.14.1 Properties

Property Value
Type

Description Value Example

name string Scene name "Scene 1"
group string Scene group name (A through H or empty string) "A"
state integer Integer value of constants: Scene.NONE, Scene.

STARTED or Scene.RELEASED
1

onstage boolean Whether the scene is affecting output of any fix-
tures

false

custom_properties table Table keys and values correspond to custom prop-
erty names and values

For example:

102 Chapter 6. Lua API

Controller API, Release 8.0

scn = get_scene(1)
name = scn.name
state = scn.state

6.14.2 Member functions

The following are member functions of Scene objects.

start

start()

Starts the scene. For example:

-- start scene 1
get_scene(1):start()

release

release([fade])

Releases the scene. Optionally specify a fade time in seconds as a float, e.g. 2.0.

For example:

-- release scene 3 with a fade of 1 second
get_scene(3):release(1.0)

toggle

toggle([fade])

Toggles the playback of the scene - if it’s running, release it; if it’s not running, start it. Optionally specify a release
fade time in seconds as a float, e.g. 2.0.

For example:

-- toggle scene 2, releasing in time 3 secs if it's running
get_scene(2):release(3.0)

6.14. Scene 103

Controller API, Release 8.0

6.15 System

In trigger action scripts the system namespace is added directly to the environment; in IO modules it is in the
controller namespace, i.e. controller.system.

6.15.1 Properties

The system namespace has the following properties:

Property Value Type Value Example
hardware_type string "lpc"
channel_capacity integer 512
serial_number string "006321"
memory_total string "12790Kb"
memory_used string "24056Kb"
memory_available string "103884Kb"
storage_size string "1914MB"
bootloader_version string "0.9.0"
firmware_version string "2.8.0"
reset_reason string "Software Reset"
last_boot_time DateTime
ip_address string "192.168.1.3"
subnet_mask string "255.255.255.0"
broadcast_address string "192.168.1.255"
default_gateway string "192.168.1.3"
dns_servers table of strings “1.1.1.1”,”1.0.0.1”

For example:

capacity = system.channel_capacity

boot_time = system.last_boot_time.time_string

6.16 Temperature

A Temperature object is returned from get_temperature.

6.16.1 Properties

Property Value Type Description Value Example
sys_temp number Only for MSC X and Atlas/Atlas Pro 40.2
core1_temp number Only for MSC X and Atlas/Atlas Pro 44
core2_temp number Only for MSC X rev 1 44.1
ambient_temp number Only for MTPC, MSC X rev 1 36.9
cc_temp number Only for MSC X rev 2 and Atlas/Atlas Pro 44.1
gpu_temp number Only for Atlas/Atlas Pro 38.2

104 Chapter 6. Lua API

Controller API, Release 8.0

For example:

temp = get_temperature()
log(temp.ambient_temp)

6.17 Time

Information about the controller’s clock is available in the time namespace. In trigger action scripts the time names-
pace is added directly to the environment; in IO modules it is in the controller namespace, i.e. controller.time.

6.17.1 Properties

The time namespace has the following properties:

Property Value Type Value Example
is_dst boolean true
gmt_offset integer (minutes)

-300

300 Minutes (5 hours) behind

6.17.2 Functions

The time namespace has the following functions, which each return a DateTime object:

• get_current_time()

• get_sunrise()

• get_sunset()

• get_civil_dawn()

• get_civil_dusk()

• get_nautical_dawn()

• get_nautical_dusk()

• get_new_moon()

• get_first_quarter()

• get_full_moon()

• get_third_quarter()

For example:

current_hour = time.get_current_time().hour

6.17. Time 105

Controller API, Release 8.0

6.18 Timeline

A Timeline object is returned from get_timeline.

6.18.1 Properties

Property Value
Type

Description Value Example

name string Timeline name "Timeline 1"
group string Timeline group name (A through H or empty string) "A"
length integer Timeline length, in milliseconds 10000
source_bus integer Integer value of constants: DEFAULT, TCODE_1 . . .

TCODE_6, AUDIO_1 . . . AUDIO_4
1

timecode_format string Incoming timecode format on source bus "SMPTE30"
audio_band integer 0 is equivalent to the constant: VOLUME 0
audio_channel integer Integer value of constants: LEFT, RIGHT or

COMBINED
1

audio_peak boolean The Peak setting of the timeline, if set to an audio
time source

false

time_offset integer Milliseconds 5000
state integer Integer value of the state - see Timeline States be-

low for definitions
1

onstage boolean Whether the timeline is affecting output of any fix-
tures

true

position integer Milliseconds 5000
priority integer Integer value of constants: HIGH_PRIORITY,

ABOVE_NORMAL_PRIORITY, NORMAL_PRIORITY,
BELOW_NORMAL_PRIORITY or LOW_PRIORITY

0

custom_properties table Table keys and values correspond to custom prop-
erty names and values

For example:

tl = get_timeline(1)
name = tl.name
state = tl.state

if (tl.source_bus == TCODE_1) then
-- do something

end

106 Chapter 6. Lua API

Controller API, Release 8.0

Timeline States

A timeline will be in one of the following states:

• Timeline.NONE

– The timeline has never been run (since the last reset of the controller).

• Timeline.RUNNING

– The timeline is running (although might not be actively controlling outputs - see the onstage property).

• Timeline.PAUSED

– The timeline has been paused by another action.

• Timeline.HOLDING_AT_END

– The timeline has reached the end, and is holding.

• Timeline.RELEASED

– The timeline has been run and has now been released.

6.18.2 Member functions

The following are member functions of Timeline objects.

start

start()

Starts the timeline. For example:

-- start timeline 1
get_timeline(1):start()

release

release([fade])

Releases the timeline. Optionally specify a fade time in seconds as a float, e.g. 2.0.

For example:

-- release timeline 3
get_timeline(3):release(1.0)

6.18. Timeline 107

Controller API, Release 8.0

toggle

toggle([fade])

Toggles the playback of the timeline - if it’s running, release it; if it’s not running, start it. Optionally specify a release
fade time in seconds as a float, e.g. 2.0.

For example:

-- toggle timeline 2, releasing in time 3 secs if it's running
get_timeline(2):release(3.0)

pause

pause()

Pauses the timeline.

resume

resume()

Resumes the timeline.

set_rate

set_rate(rate)

Sets the rate of playback of the timeline. Set the rate as a float or an integer with range, e.g. 0.1 or Variant(10,
100) would set the rate to 10% of normal speed.

For example:

-- set the rate of timeline 1 to 20% of normal speed
get_timeline(1):set_rate(0.2)
-- set the rate of timeline 2 to 30% of normal speed
get_timeline(2):set_rate(Variant(30,100))

set_position

set_position(position)

Jumps the position of playback of the timeline. Set the position as a float or an integer with range, e.g. 0.1 or
Variant(10, 100) would set the position to 10% of the timeline length.

For example:

-- set the position of timeline 1 to 50% of timeline length
get_timeline(1):set_position(0.5)
-- set the position of timeline 2 to 20% of timeline length
get_timeline(2):set_position(Variant(2,10))

108 Chapter 6. Lua API

Controller API, Release 8.0

set_default_source

Set the time source for the timeline to the default.

For example:

get_timeline(1):set_default_source()

set_timecode_source

set_timecode_source(timecodeBus[, offset])

Set a timecode source for the timeline according to the parameters:

Parameter Value Type Description Value Example
timecodeBus integer Integer value of constants: TCODE_1 . . .

TCODE_6
TCODE_1

offset integer Optional offset to apply to the timecode, in mil-
liseconds

1000

set_audio_source

set_audio_source(audioBus, band, channel[, peak])

Set a audio band as the time source for the timeline according to the parameters:

Parameter Value Type Description Value Example
audioBus integer Integer value of constants: AUDIO_1 . . .

AUDIO_4
AUDIO_1

band integer The audio band to sample (number of bands de-
pends on audio source configuration; 0 => vol-
ume)

0

channel integer Integer value of constants: LEFT, RIGHT or
COMBINED

LEFT

peak boolean Optional. Whether to use the peak levels from
the audio band as the time source input (default
false)

false

6.19 Universe

A Universe object is returned from e.g. get_dmx_universe.

6.19. Universe 109

Controller API, Release 8.0

6.19.1 Member functions

The following are member functions of Universe objects.

get_channel_value

get_channel_value(channel)

Gets the current level of a channel in the universe, where channel is the integer channel number (1-512).

For example:

uni = get_dmx_universe(1) -- get DMX Universe 1
level = uni:get_channel_value(1) -- get channel 1 from the returned universe

park

park(channel, value)

Parks an output channel at a given value according to the parameters:

Parameter Value Type Description Value Example
channel integer (1-512) Number of the output channel 1
value integer (0-255) Level to set the channel to 128

For example:

-- Park channel 4 of DMX universe 1 at 128 (50%)
get_dmx_universe(1):park(4,128)

unpark

unpark(channel)

Clears the parked value on an output channel, where channel is the integer channel number (1-512).

For example:

-- Unpark channel 4 of DMX universe 1
-- (it will go back to normal output levels)
get_dmx_universe(1):unpark(4)

110 Chapter 6. Lua API

Controller API, Release 8.0

6.20 Variant

6.20.1 Introduction

Within Lua Scripting (as with other scripting languages) it is possible to store data within a named location (variable).

Lua typically doesn’t differentiate between the contents of a variable (unlike some programming languages) and the
type (integer, string, boolean) of the variable can change at any time.

Mosaic has added an object to the scripting environment called a Variant, which can be used to contain the data with
an assignment as to the type of data that is contained. This means that a single Variant can be utilised and handled
differently depending on the data that is contained and how it is being used.

6.20.2 Definition

Properties

A Variant object has the following properties:

Property Description
integer Get or set an integer data type
range Get or set the range of an integer data type
real Get or set a real data type (number with decimal point)
string Get or set a string data type
ip_address Get or set an IP address data type

Member functions

Constructor

Variant()

Create new variant.

is_integer

Returns true or false to show whether the stored data has an integer representation.

is_string

Returns true or false to show whether the stored data has a string representation.

6.20. Variant 111

Controller API, Release 8.0

is_ip_address

Returns true or false to show whether the stored data has an IP address representation.

6.20.3 Usage

Variant(value, range)

Defining a variant

Within your Lua script you can create a Variant with the following syntax:

var = Variant() -- where var is the name of the variant.

Variant types

Integer

An integer variant can be used to store a whole number:

var = Variant() -- where var is the name of the variant

var.integer = 123 -- set var to an integer value of 123

log(var.integer) -- get the integer value stored in var

log(var.real) -- get the integer value stored in var and convert it to a float

log(var.string) -- get the integer value stored in var and convert it to a string

As shown in the example code, above, the integer property of a Variant can be used to either get or set the value of
the Variant as an integer (whole number).

var:is_integer() -- returns a boolean if the variant contains an integer

Range

An integer can be stored with an optional range parameter:

var = Variant() -- where var is the name of the variant

var.integer = 123 -- set var to an integer value of 123

var.range = 255 -- set the range of var to be 255

This can be used to calculate fractions and/or to define that a Variant is a 0-1, 0-100 or 0-255 value.

The range of a Variant should be set if you intend to use the Variant to set an intensity or colour value.

Some captured variables have a range attribute, and this is indicated in the log like this:

112 Chapter 6. Lua API

Controller API, Release 8.0

Trigger 7 (Ethernet Input): Captured 3 variables
Captured variables
1 - Integer: 100 of 255

Real

A real Variant can be used to store a floating point (decimal) number.

var = Variant() -- where var is the name of the variant.

var.real = 12.3 -- set var to an integer value of 12.3

log(var.real) -- get the integer value stored in var

As shown in the example code, above, the real property of a Variant can be used to either get or set the value of the
Variant as a real number.

String

A string Variant can be used to store a string of ASCII characters.

var = Variant() -- where var is the name of the variant

var.string = "example" -- set var to a string value of "example"

log(var.string) -- get the string value stored in var

As shown in the example code, above, the string property of a Variant can be used to either get or set the value of
the Variant as a string.

var:is_string() -- returns a boolean if the variant contains a string

IP address

var = Variant() -- where var is the name of the variant

var.ip_address = "192.168.1.23" -- set var to the IP Address 192.168.1.23 or -1062731497

log(var) -- get the stored data ("192.168.1.23")

log(var.ip_address) -- get the stored IP Address (-1062731497)

log(var.string) -- get the stored IP Address and convert it to a string ("192.168.1.23")

log(var.integer) -- get the stored IP Address and convert it to an integer (-1062731497)

As shown in the example code, above, the ip_address property of a Variant can be used to either get or set the value
of the Variant as an IP Address.

As a setter, you can pass a dotted decimal string (e.g. “192.168.1.23” or the integer representation -1062731497).

6.20. Variant 113

Controller API, Release 8.0

var:is_ip_address() -- returns a boolean if the variant contains a IP Address

Shorthand

A Variant can also be defined using a shorthand:

var = Variant(128,255) -- create variable var as an integer (128) with range 0-255

var = Variant(128) -- create variable var as a real number (128.0)

var = Variant(12.3) -- create variable var as a real number (12.3)

var = Variant("text") -- create variable var as a string ("text")

Note: There isn’t a shorthand for IP Addresses.

6.20.4 Default variants

Some script functions return a Variant, including get_trigger_variable. For example:

get_trigger_variable(1).integer

The master_intensity_level properties of Group and Content Target are both Variants:

get_group(1).master_intensity_level.integer

get_group(1).master_intensity_level.range

get_content_target(1).master_intensity_level.integer

get_content_target(1).master_intensity_level.range

6.21 WebServer

Information about the controller’s web server is available in the web_server namespace. In trigger action scripts the
web_server namespace is added directly to the environment; in IO modules it is in the controller namespace, i.e.
controller.web_server.

114 Chapter 6. Lua API

Controller API, Release 8.0

6.21.1 Properties

The web_server namespace has the following properties:

Property Value Type Description Value Example
is_enabled boolean True if the web server is enabled true
http_port integer The port the HTTP web server is listening on or

0 if disabled.
51346

https_port integer The port the HTTPS web server is listening on or
0 if disabled.

56278

6.22 Standard Libraries

The following standard Libraries are imported

• Basic library

• Package library

• String manipulation

• Basic UTF-8 support

• Table manipulation

• Mathematical functions

• Input and output

6.22.1 Input and output (IO)

Attention: It’s important to understand some of the limitations of writing to permanent storage when using the IO
library.

Frequency and size of writes should be limited for reliability and performance.

Flash storage (i.e. SD Card) has an almost unlimited number of read operations, but a limited number of write opera-
tions. Exceeding the write count can degrade the storage device, leading to data loss or failure.

While flash storage is faster than legacy magnetic media (e.g. HDD, floppy disks), it’s markedly slower than RAM (aka
Memory). To prevent performance degradation the IO library buffers the data in RAM until being committed to the
storage at some point in the future by the underlying operating system (OS). While the standard IO library provides
io.flush(), this function simply passes the buffer to the OS ready to be committed when the OS is ready.

Should the controller experience a power loss before the file is committed to disk, then at best the data is lost, at worst
this could cause corruption to the underlying flash storage. To mitigate this, and to provide the designer control over
when this process should happen, io.open() is provided with an extra mode flag. By including the mode flag c, the
file will be committed to storage when an io.flush() or io.close() command is issued.

While this increases data integrity, it comes with performance degradation; large files may take a number of moments
for the commit to complete, during this time you may experience a degradation of playback performance.

6.22. Standard Libraries 115

https://www.lua.org/manual/5.3/manual.html#6.1
https://www.lua.org/manual/5.3/manual.html#6.3
https://www.lua.org/manual/5.3/manual.html#6.4
https://www.lua.org/manual/5.3/manual.html#6.5
https://www.lua.org/manual/5.3/manual.html#6.6
https://www.lua.org/manual/5.3/manual.html#6.7
https://www.lua.org/manual/5.3/manual.html#6.8

Controller API, Release 8.0

Note: For further advice, please contact our support team.

--[[Without commit flag]]--
local file = io.open('myFile.txt', 'w+')
file:write('TheQuickBrownFoxJumpsOverTheLazyDog')
file:close() -- The file is committed to storage at "some point" in the future.

--[[With commit flag]]--
local file = io.open('myFile.txt', 'w+c')
file:write('TheQuickBrownFoxJumpsOverTheLazyDog')
file:close() -- The file is committed to storage now.

6.23 Functions

The following functions are available in trigger action scripts and in IO modules. In trigger action scripts they are
added directly to the environment; in IO modules they are available in the controller namespace.

6.23.1 Queries

get_current_project

Returns a Project object.

For example:

project_name = get_current_project().name

get_current_replication

Returns a Replication object.

For example:

rep_name = get_current_replication().name

get_location

Returns a Location object.

For example:

lat = get_location().lat

116 Chapter 6. Lua API

Controller API, Release 8.0

get_timeline

get_timeline(timelineNum)

Returns a single Timeline object for the timeline with user number timelineNum.

For example:

tl = get_timeline(1)
name = tl.name
state = tl.state

if (tl.source_bus == TCODE_1) then
-- do something

end

get_scene

get_scene(sceneNum)

Returns a single Scene object for the scene with user number sceneNum.

For example:

scn = get_scene(1)
name = scn.name
state = scn.state

get_group

get_group(groupNum)

Returns a single Group object for the group with user number groupNum.

For example:

grp = get_group(1)
name = grp.name

Note: Passing 0 as groupNum will return Group for the All Fixtures group. This can also be used on Atlas family
projects to master the intensity of the entire unit.

get_fixture_override

get_fixture_override(fixtureNum)

Returns an Override object for the fixture with user number fixtureNum.

For example:

6.23. Functions 117

Controller API, Release 8.0

-- Get override for fixture 22
override = get_fixture_override(22)
-- Set the override colour to red (and full intensity)
override:set_irgb(255, 255, 0, 0)

get_group_override

get_group_override(groupNum)

Returns an Override object for the group with user number groupNum.

Note: Passing 0 as groupNum will return an Override for the All Fixtures group.

For example:

-- Get override for group 3
override = get_group_override(3)
-- Set the intensity to 50% in 2 seconds
override:set_intensity(128, 2.0)

get_current_controller

Returns the Controller that the script is being executed on.

For example:

cont = get_current_controller()
name = cont.name

get_remote_devices

Returns a table of remote devices on this controller. The keys are integers with values equal to the global constants
which correspond to the remote device type (e.g. RIO44). The values are tables of integers representing the assigned
device number.

6.23.2 get_input_count

get_input_count()

Returns the number of general purpose input ports this controller has.

118 Chapter 6. Lua API

Controller API, Release 8.0

6.23.3 get_input_type

get_input_type(inputNum)

Returns an integer equal to the one of the constants ANALOG, DIGITAL, CONTACT_CLOSURE according to the configu-
ration of this controller’s general purpose input port with number inputNum, or nil if inputNum does not correspond
to a port.

6.23.4 get_input_threshold

get_input_threshold(inputNum)

Returns an InputThreshold object describing the threshold configurations for this controller’s general purpose input
port with number inputNum, or nil if inputNum does not correspond to a port.

6.23.5 get_output_count

get_output_count()

Returns the number of relay output ports this controller has.

get_network_primary

Returns the Controller in the project that is set as the network primary.

is_controller_online

is_controller_online(controllerNum)

Returns true if the controller with user number controllerNum has been discovered, or false otherwise.

For example:

if (is_controller_online(2)) then
log("Controller 2 is online")

else
log("Controller 2 is offline")

end

get_temperature

Returns a Temperature object with measurements from the controller’s temperature sensors.

For example:

temp = get_temperature()
log(temp.ambient_temp)

6.23. Functions 119

Controller API, Release 8.0

get_rio

get_rio(type, num)

Returns a RIO object representing a RIO matching the parameters:

• type can be one of the constants RIO80, RIO44 or RIO80.

• num is the remote device number within the Designer project.

For example:

rio = get_rio(RIO44, 1)
input = rio:get_input(1)
output_state = rio:get_output(1)

Note: The constants for type are in the controller namespace within IO modules, e.g. controller.RIO44.

get_bps

get_bps(num)

Returns a BPS object with remote device number num.

For example:

bps = get_bps(1)
btn = bps:get_state(1)

get_text_slot

get_text_slot(slotName)

Returns the value of the text slot with name slotName. If no such text slot exists in the project then an empty string
will be returned.

For example:

log(get_text_slot("my text slot"))

get_dmx_universe

get_dmx_universe(idx)

Returns a Universe object for the DMX universe with number idx.

For example:

uni = get_dmx_universe(1) -- get DMX Universe 1
level = uni:get_channel_value(1) -- get channel 1 from the returned universe

120 Chapter 6. Lua API

Controller API, Release 8.0

get_artnet_universe

get_artnet_universe(idx)

Returns a Universe object for the Art-Net universe with number idx.

get_pathport_universe

get_pathport_universe(idx)

Returns a Universe object for the Pathport universe with number idx.

get_sacn_universe

get_sacn_universe(idx)

Returns a Universe object for the sACN universe with number idx.

get_kinet_universe

get_kinet_universe(power_supply_num, port_num)

Returns a Universe object for the KiNET power supply port matching the parameters:

• power_supply_num is the KiNET power supply number in the project.

• port_num is the port number of the KiNET power supply.

get_edn_universe

get_edn_universe(remote_device_type, remote_device_num, port_num)

Returns a Universe object for the EDN output matching the parameter:

• remote_device_type is be one of the constants EDN10 or EDN20.

• remote_device_num is the remote device number of the EDN in the project.

• port_num is the DMX output port number of the EDN.

Note: The constants for remote_device_type are in the controller namespace within IO modules, e.g.
controller.EDN20.

get_input

get_input(idx)

Returns the state of the controller’s input numbered idx as a boolean (for digital inputs) or an integer (for analog inputs,
0-100).

For example:

6.23. Functions 121

Controller API, Release 8.0

in1 = get_input(1)

if in1 == true then
log("Input 1 is digital and high")

elseif in1 == false then
log("Input 1 is digital and low")

else
log("Input 1 is analog at " .. in1)

end

get_dmx_input

get_dmx_input(channel)

Returns the value of the DMX channel number as an integer. If no DXM input is detected then nil will be returned.

get_trigger_variable

get_trigger_variable(idx)

Returns the trigger variable at index idx as a Variant.

For example:

-- Use with a Touch Colour Move Trigger
red = get_trigger_variable(1).integer
green = get_trigger_variable(2).integer
blue = get_trigger_variable(3).integer

-- Use with Serial Input "<s>\r\n"
input = get_trigger_variable(1).string

get_trigger_number

get_trigger_number()

Returns the number of the trigger that ran this script. Will return nil if called from another context.

get_resource_path

get_resource_path(filename)

Returns the path to the resource file, where filename is the name of a file on the controller’s internal storage.

For example:

dofile(get_resource_path("my_lua_file.lua"))

122 Chapter 6. Lua API

Controller API, Release 8.0

get_content_target

Note: Only supported on Atlas and Atlas Pro.

On a Atlas: get_content_target(compositionNum)

On a Atlas Pro: get_content_target(compositionNum, type)

Returns a Content Target object representing the Content Target in the project that matches the parameters:

• compositionNum is the user number of the composition containing the desired Content Target.

• type describes the Content Target type and can be one of the constants PRIMARY, SECONDARY or TARGET_3 . . .
TARGET_8.

Note: The constants for type are in the controller namespace within IO modules, e.g. controller.TARGET_5.

Will return nil if no matching Content Target exists in the project.

For example, on a Atlas:

target = get_content_target(1)
current_level = target.master_intensity_level

And on a Atlas Pro:

target = get_content_target(1, PRIMARY)
current_angle = target.rotation_offset

get_adjustment

Note: Only supported on Atlas Pro.

get_adjustment(num)

Returns an Adjustment Target object representing the Adjustment Target in the project with the integer user number
num:

Will return nil if no matching Adjustment Target exists in the project.

For example:

target = get_adjustment(1)
target:transition_x_position(10,1,5) -- Move 10 pixels right in 5 seconds
target:transition_y_position(10,1,5) -- Move 10 pixels down in 5 seconds
target:transition_rotation(90,1,5) -- Rotate by 90 degrees in 5 seconds

6.23. Functions 123

Controller API, Release 8.0

get_log_level

Returns the current log level of the controller, which can be one of the following constants:

• LOG_DEBUG

• LOG_TERSE

• LOG_NORMAL

• LOG_EXTENDED

• LOG_VERBOSE

• LOG_CRITICAL

Note: These constants are in the controller namespace within IO modules, e.g. controller.LOG_NORMAL.

get_syslog_enabled

Returns true if Syslog is enabled, or false otherwise.

get_syslog_ip_address

Returns the IP address of the Syslog server as a string.

get_ntp_enabled

Returns true if NTP is enabled.

get_ntp_ip_address

Returns the IP address of the NTP server as a string.

get_hash_string

get_hash_string(string, method)

Returns hashed string using the one of specified cryptographic methods:

• HASH_MD4 (0)

• HASH_MD5 (1)

• HASH_SHA1 (2)

• HASH_SHA224 (3)

• HASH_SHA256 (4)

• HASH_SHA384 (5)

• HASH_SHA512 (6)

124 Chapter 6. Lua API

Controller API, Release 8.0

get_hash_table

get_hash_table(table, method)

Returns hashed byte table using the specified cryptographic method.

-- Hash the bytes using MD5
local bytes = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6}
local digest = get_hash_table(bytes, HASH_MD5)
-- 'digest' now contains '{0x6a, 0xc1, 0xe5, 0x6b, 0xc7, 0x8f, 0x03, 0x10, 0x59, 0xbe,␣
→˓0x7b, 0xe8, 0x54, 0x52, 0x2c, 0x4c}'

6.23.6 Actions

log

log([level,]message)

Write a message to the controller’s log according to the parameters:

Parameter Value Type Description Value Example
level Integer value

of constants:
LOG_DEBUG,
LOG_TERSE,
LOG_NORMAL,
LOG_EXTENDED,
LOG_VERBOSE,
LOG_CRITICAL;
defaults to
LOG_NORMAL

Optional. The log level to apply to the message. LOG_VERBOSE

message string The message to add to the log. "Your log
message"

For example:

log(LOG_CRITICAL, "This is a critical message!") -- logs a message at Critical log level
log("This is a normal message.") -- logs a message at Normal log level.

reset

Reboots the controller.

6.23. Functions 125

Controller API, Release 8.0

set_log_level

set_log_level(log_level)

Changes the log level of the controller, showing more or less detailed information, where log_level is an integer
value of the constants:

• LOG_DEBUG (5)

• LOG_TERSE (4)

• LOG_NORMAL (3)

• LOG_EXTENDED (2)

• LOG_VERBOSE (1)

• LOG_CRITICAL (0)

pause_all

Pause all timelines in the project.

resume_all

Resume all timelines in the project.

release_all

release_all([fade,] [group])

Release all timelines and scenes in the project.

Note:

You can provide:

• No arguments - this will release all with the default fade time.

• A fade time, which will be used to release all.

• Or, both a fade time and a group.

Parameter Value Type Description Value
Example

fade float Optional. Release fade time in seconds. If not provided, the
default fade time will be used.

2.0

group string Optional. Group name or number. If name, prepend the name
with ! to apply the action to all groups except the specified
group.

"Group
1", "!
Group
2" or 3

126 Chapter 6. Lua API

Controller API, Release 8.0

release_all_timelines

release_all_timelines([fade,] [group])

Release all timelines in the project.

Note:

You can provide:

• No arguments - this will release all with the default fade time.

• A fade time, which will be used to release all.

• Or, both a fade time and a group.

Parameter Value Type Description Value
Example

fade float Optional. Release fade time in seconds. If not provided, the
default fade time will be used.

2.0

group string Optional. Group name or number. If name, prepend the name
with ! to apply the action to all groups except the specified
group.

"Group
1", "!
Group
2" or 3

release_all_scenes

release_all_scenes([fade,] [group])

Release all scenes in the project.

Note:

You can provide:

• No arguments - this will release all with the default fade time.

• A fade time, which will be used to release all.

• Or, both a fade time and a group.

Parameter Value Type Description Value
Example

fade float Optional. Release fade time in seconds. If not provided, the
default fade time will be used.

2.0

group string Optional. Group name or number. If name, prepend the name
with ! to apply the action to all groups except the specified
group.

"Group
1", "!
Group
2" or 3

6.23. Functions 127

Controller API, Release 8.0

clear_all_overrides

clear_all_overrides([fade])

Removes all overrides from all fixtures and groups. Optionally specify a fade time in seconds as a float, e.g. 2.0.

enqueue_trigger

enqueue_trigger(num[,var...])

Queue trigger number num to be fired on the next controller playback refresh. The trigger’s conditions will be tested.
Optional variables var can be passed in as additional arguments.

For example:

-- enqueue trigger 2, passing in three variables: 255, 4.0 and "string"
enqueue_trigger(2,255,4.0,"string")

enqueue_local_trigger

enqueue_local_trigger(num[,var...])

Same behaviour as for enqueue_trigger but the trigger num will only be queued on the controller that ran the function
- the trigger will not propagate to other controllers in the project.

force_trigger

force_trigger(num[,var...])

Queue trigger number num to be fired on the next controller playback refresh without testing the trigger’s conditions -
the trigger actions will always run. Optional variables var can be passed in as additional arguments.

For example:

-- force the execution of trigger 2's actions
-- pass in three variables: 255, 4.0 and "string"
force_trigger(2,255,4.0,"string")

force_local_trigger

force_local_trigger(num[,var...])

Same behaviour as for force_trigger but the trigger num will only be queued on the controller that ran the function - the
trigger will not propagate to other controllers in the project.

128 Chapter 6. Lua API

Controller API, Release 8.0

set_text_slot

set_text_slot(name, value)

Set the value of the text slot named name in the project to value, for example:

-- Set "My slot" to value "Hello world!"
set_text_slot("My slot", "Hello world!")

set_control_value

set_control_value(name, [index,] value[, emitChange])

Set the value on a Touch Slider or Colour Picker according to the parameters:

Parameter Value Type Description Value Example
name string The Key of the Touch Control. slider001
index integer (1-3) Optional. Axis of movement - a slider has 1; a

colour picker has 3. Will default to 1 if this pa-
rameter isn’t specified.

1

value integer (0-255) New value to set. 128
emitChange boolean Optional. Whether to fire associated triggers as

a result of the control value change. Defaults to
false.

true

For example:

-- Set slider001 to half (and don't fire any associated triggers)
set_control_value("slider001", 128)
-- Set the second axis (green) to full on colour020
set_control_value("colour020", 2, 255)

set_control_state

set_control_state(name, state)

Set the state on a Touch control according to the parameters:

Parameter Value Type Description Value Example
name string The Key of the Touch Control. slider001
state string The name of the state as defined in the Touch

theme.
Green

For example:

-- Set slider001 to a state called "Green"
set_control_state("slider001", "Green")

6.23. Functions 129

Controller API, Release 8.0

set_control_caption

set_control_caption(name, caption)

Set the caption on a Touch control according to the parameters:

Parameter Value Type Description Value Example
name string The Key of the Touch Control. button001
caption string The text to display as the control’s caption. On

For example:

-- Set button001's caption to "On"
set_control_caption("button001", "On")

set_interface_page

set_interface_page(number[, transition])

Change the current page on the Touch interface according to the parameters:

Parameter Value Type Description Value Example
number integer Touch interface page to change to. 2
transition integer Optional page transition. Integer value of con-

stants: SNAP, PAN_LEFT, PAN_RIGHT
PAN_LEFT

Note: Must be executed on the MTPC that hosts the interface.

For example:

-- Change the touch screen interface to page 4 with a snap transition
set_interface_page(4, SNAP)

set_interface_enabled

set_interface_enabled([enabled])

Enable/disable the touchscreen, according to the optional boolean parameter enabled (default: true).

Note: Must be executed on the MTPC that hosts the interface.

For example:

-- Disable the touchscreen
set_interface_enabled(false)

130 Chapter 6. Lua API

Controller API, Release 8.0

set_interface_locked

set_interface_locked([lock])

Lock/unlock the touchscreen, according to the optional boolean parameter lock (default: true).

Note: Must be executed on the MTPC that hosts the interface.

For example:

-- Lock the touchscreen
set_interface_locked()
-- Unlock the touchscreen
set_interface_locked(false)

push_to_web

push_to_web(name, value)

Sends data as JSON to clients who are subscribed to the relevant websocket channel, e.g. custom web interfaces using
subscribe_lua in the query.js library. The parameters are as follows:

Parameter Value Type Description Value Example
name string JSON attribute name "myVar"
value Variant Value for the JSON, which will be sent as a string. "String value"

or 1234

For example:

myData = 1234
-- Will push JSON object {"my_data":"1234"}
push_to_web("my_data", myData)

disable_output

disable_output(protocol)

Disables the output of a single protocol from the controller, where protocol is the integer value of the constants:

• DMX

• PATHPORT

• ARTNET

• KINET

• SACN

• DVI

• RIO_DMX

• EDN_DMX

• EDN_SPI

6.23. Functions 131

Controller API, Release 8.0

For example:

-- Disable the DMX output from the controller
disable_output(DMX)

enable_output

enable_output(protocol)

Enables the output of a single protocol from the controller, where protocol is the integer value of the constants defined
for disable_output.

For example:

-- Enable the DMX output from the controller
enable_output(DMX)

set_timecode_bus_enabled

set_timecode_bus_enabled(bus[, enable])

Enable or disable a timecode bus, where bus is the integer value of the constants TCODE_1 . . . TCODE_6 and enable
is a boolean, determining whether the bus is enabled (default true) or not.

132 Chapter 6. Lua API

	Introduction
	Web API Authentication
	Authentication Methods
	Cookie Authentication
	Custom Login Page

	Token Authentication

	What’s New
	v8.0
	v7.0
	v6.0
	v5.0

	HTTP API
	Authentication
	Authentication
	Authenticate
	Methods
	POST
	original_url

	Logout
	Methods
	GET

	API Versions
	GET

	Querying and Controlling
	Beacon
	Methods
	POST

	Channel / Park
	Methods
	POST
	DELETE

	Universe Key String Format

	Cloud
	Methods
	GET
	POST

	Command
	Methods
	POST
	Response

	Config
	Methods
	POST
	GET

	Content Targets
	Methods
	POST
	GET

	Controller
	Methods
	GET

	DALI
	Methods
	GET
	POST

	DALI Interface
	Methods
	GET

	Factory Reset
	HTTP
	POST

	Group
	Methods
	POST
	GET

	Input
	Methods
	GET

	Log
	Methods
	GET

	Lua Variable
	Methods
	GET

	Output
	Methods
	POST
	GET

	Universe Key String Format

	Override
	Methods
	PUT
	Override Colour
	RGB
	Hue/Saturation
	Example Overrides

	DELETE

	Project
	Methods
	GET

	Project File
	Methods
	GET
	POST

	Protocol
	Methods
	GET

	RDM Discovery
	Methods
	POST
	PUT
	GET

	Universe Key String Format

	RDM Get
	Methods
	POST
	Meta
	STATUS_MESSAGES
	PARAMETER_DESCRIPTION
	DMX_PERSONALITY_DESCRIPTION
	SLOT_DESCRIPTION
	SENSOR_DEFINITION and SENSOR_VALUE

	Universe Key String Format
	Supported RDM PIDs

	RDM Set
	Methods
	POST
	Meta
	DEVICE_LABEL
	IDENTIFY_DEVICE
	DMX_START_ADDRESS
	DMX_PERSONALITY
	SENSOR_VALUE
	LAMP_HOURS
	LAMP_STATE
	Raw

	Universe Key String Format
	Supported RDM PIDs

	Remote Device
	Methods
	GET

	Replication
	Methods
	GET

	Hardware Reset
	Methods
	POST

	Scene
	Methods
	POST
	GET

	System
	Methods
	GET

	Temperature
	Methods
	GET

	Text Slots
	Methods
	PUT
	GET

	Time
	Methods
	GET

	Timeline
	Methods
	POST
	GET

	Trigger
	Methods
	POST
	GET

	User
	Methods
	POST
	PUT
	DELETE

	User Groups
	Methods
	GET
	GET

	HTTP API Objects
	DALI Power
	DALI Error
	DALI Schedule
	DALI Ballast Status
	RDM Device Info
	RDM Universe Key
	Enumerated Protocols
	Enumerated EDN Device Types

	JavaScript Query Library
	Including the Library
	Event Handlers
	Querying and Controlling
	Beacon
	Functions
	toggle_beacon

	Channel / Park
	Functions
	park_channel
	unpark_channel

	Command
	Functions
	run_command

	Config
	Functions
	edit_config
	get_config

	Content Targets
	Functions
	master_content_target_intensity
	get_content_target_info

	Controller
	Functions
	get_controller_info

	Group
	Functions
	master_intensity
	get_group_info

	Input
	Log
	Lua Variable
	Functions
	get_lua_variables

	Output
	Functions
	disable_output
	enable_output
	get_output

	Universe Key String Format
	Enumerated Protocols
	Enumerated Remote Device Types

	Override
	Functions
	set_group_override
	clear_group_overrides
	set_fixture_override
	clear_fixture_overrides
	clear_all_overrides

	Project
	Functions
	get_project_info

	Protocol
	Functions
	get_protocols

	RDM Discovery
	Functions
	start_rdm_discovery

	RDM Get
	Functions
	start_rdm_get

	RDM Set
	Functions
	start_rdm_set

	Remote Device
	Functions
	get_remote_device_info

	Replication
	Functions
	get_replication

	Scene
	Functions
	start_scene
	release_scene
	toggle_scene
	release_all_scenes
	release_all
	get_scene_info

	JavaScript Command Callback

	System
	Functions
	get_system_info

	Temperature
	Functions
	get_temperature

	Text Slots
	Functions
	set_text_slot
	get_text_slot

	Time
	Functions
	get_current_time

	Timeline
	Functions
	start_timeline
	release_timeline
	toggle_timeline
	pause_timeline
	resume_timeline
	pause_all
	resume_all
	release_all_timelines
	release_all
	set_timeline_rate
	set_timeline_position
	get_timeline_info

	JavaScript Command Callback

	Trigger
	Functions
	fire_trigger
	get_trigger_info

	Subscriptions
	Websocket Subscriptions
	Functions
	subscribe_timeline_status
	subscribe_scene_status
	subscribe_group_status
	subscribe_remote_device_status
	subscribe_beacon
	subscribe_lua
	subscribe_rdm_discovery
	Device found
	Discovery finished
	Discovery cancelled

	subscribe_rdm_get_set
	Get Finished
	Set Finished
	Get/Set result error
	Get/Set operation cancelled
	Get/Set Result
	RDM PID result data
	Get Communication Status (COMMS_STATUS)
	Get Status Messages (STATUS_MESSAGES)
	Get Supported Parameters (SUPPORTED_PARAMETERS)
	Get Parameter Description (PARAMETER_DESCRIPTION)
	Get Device Info (DEVICE_INFO)
	Get Device Model Description (DEVICE_MODEL_DESCRIPTION)
	Get Manufacturer Label (MANUFACTURER_LABEL)
	Get/Set Device Label (DEVICE_LABEL)
	Get/Set Factory Defaults (FACTORY_DEFAULTS)
	Get Software Version Label (SOFTWARE_VERSION_LABEL)
	Get Boot Software Version ID (BOOT_SOFTWARE_VERSION_ID)
	Get Boot Software Version Label (BOOT_SOFTWARE_VERSION_LABEL)
	Get/Set DMX512 Personality (DMX_PERSONALITY)
	Get DMX512 Personality Description (DMX_PERSONALITY_DESCRIPTION)
	Get/Set DMX512 Starting Address (DMX_START_ADDRESS)
	Get Slot Info (SLOT_INFO)
	Get Slot Description (SLOT_DESCRIPTION)
	Get Sensor Definition (SENSOR_DEFINITION)
	Get/Set Sensor (SENSOR_VALUE)
	Get/Set Lamp Hours (LAMP_HOURS)
	Get/Set Lamp State (LAMP_STATE)

	Universe Key String Format

	Lua API
	Adjustment Target
	Properties
	Member functions
	transition_rotation
	transition_x_position
	transition_y_position

	BPS
	Member functions
	get_state
	set_led

	Content Target
	Properties
	Member functions
	set_master_intensity
	transition_rotation
	transition_y_position

	Controller
	Properties

	DateTime
	Properties

	Group
	Properties
	Member functions
	set_master_intensity

	InputThreshold
	Properties

	Location
	Properties

	Override
	Member functions
	set_irgb
	set_intensity
	set_red
	set_green
	set_blue
	set_temperature
	clear

	Project
	Properties

	Network 2
	Properties

	Replication
	Properties

	RIO
	Member functions
	get_input
	get_input_count
	get_input_type
	get_input_threshold
	get_output_count
	get_output
	set_output

	Scene
	Properties
	Member functions
	start
	release
	toggle

	System
	Properties

	Temperature
	Properties

	Time
	Properties
	Functions

	Timeline
	Properties
	Timeline States

	Member functions
	start
	release
	toggle
	pause
	resume
	set_rate
	set_position
	set_default_source
	set_timecode_source
	set_audio_source

	Universe
	Member functions
	get_channel_value
	park
	unpark

	Variant
	Introduction
	Definition
	Properties
	Member functions
	Constructor
	is_integer
	is_string
	is_ip_address

	Usage
	Defining a variant
	Variant types
	Integer
	Range
	Real
	String
	IP address

	Shorthand

	Default variants

	WebServer
	Properties

	Standard Libraries
	Input and output (IO)

	Functions
	Queries
	get_current_project
	get_current_replication
	get_location
	get_timeline
	get_scene
	get_group
	get_fixture_override
	get_group_override
	get_current_controller
	get_remote_devices

	get_input_count
	get_input_type
	get_input_threshold
	get_output_count
	get_network_primary
	is_controller_online
	get_temperature
	get_rio
	get_bps
	get_text_slot
	get_dmx_universe
	get_artnet_universe
	get_pathport_universe
	get_sacn_universe
	get_kinet_universe
	get_edn_universe
	get_input
	get_dmx_input
	get_trigger_variable
	get_trigger_number
	get_resource_path
	get_content_target
	get_adjustment
	get_log_level
	get_syslog_enabled
	get_syslog_ip_address
	get_ntp_enabled
	get_ntp_ip_address
	get_hash_string
	get_hash_table

	Actions
	log
	reset
	set_log_level
	pause_all
	resume_all
	release_all
	release_all_timelines
	release_all_scenes
	clear_all_overrides
	enqueue_trigger
	enqueue_local_trigger
	force_trigger
	force_local_trigger
	set_text_slot
	set_control_value
	set_control_state
	set_control_caption
	set_interface_page
	set_interface_enabled
	set_interface_locked
	push_to_web
	disable_output
	enable_output
	set_timecode_bus_enabled

